
PolySpace® Products for Ada 5
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
PolySpace® Products for Ada Reference
© COPYRIGHT 1999–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2009 Online Only Revised for Version 5.3 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Options Description

1
General Options . 1-2
Overview . 1-2
-prog program-name . 1-2
-date date . 1-3
-author author-name . 1-3
-verif-version verif-version . 1-3
-voa (Deprecated) . 1-4
-keep-all-files . 1-4
-continue-with-red-error (Deprecated) 1-4
-continue-with-existing-host . 1-5
-allow-unsupported-linux . 1-5
-sources "files" or -sources-list-file file_name 1-6
-extensions-for-spec-files and -ada-include-dir 1-7
-results-dir directory . 1-8
-pre-analysis-command file or "command" 1-9
-post-analysis-command file or "command" 1-10

Target/Compiler Options . 1-12
-target target-name . 1-12
-OS-target OperatingSystemTarget 1-12

Compliance with Standards Options 1-14
-storage-unit number . 1-14
-base-type-directly-visible . 1-15
Permissiveness/Strictness . 1-16

PolySpace Inner Settings Options 1-20
-main main_subprogram_name . 1-20
-main-generator . 1-20
Stubbing . 1-21
Assumptions . 1-22
-machine-architecture . 1-23
-max-processes . 1-24
Others . 1-24

iii

Precision Options . 1-26
-from verification-phase . 1-26
-to verification-phase . 1-27
-O(0-3) . 1-28
-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]] 1-29
-array-expansion-size number . 1-29
-path-sensitivity-delta number . 1-30
-variables-to-expand var1[,var2[,...]] 1-31
-variable-expansion-depth number 1-31

Multitasking Options (PolySpace Server Only) 1-33
-entry-points str1[,str2[,...]] . 1-33
-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]" 1-33
-temporal-exclusions-file file_name 1-34

Batch Options . 1-36
-server server_name_or_ip[:port_number] 1-36
-h[elp] . 1-36
-v | -version . 1-37
-sources-list-file file_name . 1-37

Check Descriptions

2
Colored Source Code for Ada . 2-2
Non-Initialized Variable: NIV/NIVL 2-3
Division by Zero: ZDV . 2-7
Arithmetic Exceptions: EXCP . 2-8
Scalar and Float Underflow/Overflow : UOVFL 2-11
Scalar and Float Overflow: OVFL . 2-12
Scalar and Float Underflow: UNFL 2-13
Attributes Check: COR . 2-15
Array Length Check: COR . 2-18
DIGITS Value Check: COR . 2-19
DELTA Value Length Check: COR 2-20
Static Range and Values Check: COR 2-21
Discriminant Check: COR . 2-23
Component Check: COR . 2-24
Dimension Versus Definition Check: COR 2-25
Aggregate Versus Definition Check: COR 2-27

iv Contents

Aggregate Array Length Check: COR 2-28
Sub-Aggregates Dimension Check: COR 2-29
Characters Check: COR . 2-31
Accessibility Level on Access Type: COR 2-32
Explicit Dereference of a Null Pointer: COR 2-34
Accessibility of a Tagged Type: COR 2-35
Power Arithmetic: POW . 2-36
User Assertion: ASRT . 2-38
Non Terminations: Calls and Loops 2-39
Unreachable Code: UNR . 2-49
Value on Assignment: VOA . 2-51
Inspection Points: IPT . 2-53

Approximations Used During Verification

3
Why PolySpace Verification Uses Approximations 3-2
What is Static Verification . 3-2
Exhaustiveness . 3-3

Examples

4
Complete Examples . 4-2
Simple Ada Example . 4-2
HDCA Server Example . 4-2
airplane2 Example . 4-3
High Speed Train Example . 4-3

v

vi Contents

1

Options Description

• “General Options” on page 1-2

• “Target/Compiler Options” on page 1-12

• “Compliance with Standards Options” on page 1-14

• “PolySpace Inner Settings Options” on page 1-20

• “Precision Options” on page 1-26

• “Multitasking Options (PolySpace Server Only)” on page 1-33

• “Batch Options” on page 1-36

1 Options Description

General Options

In this section...

“Overview” on page 1-2
“-prog program-name” on page 1-2
“-date date” on page 1-3
“-author author-name” on page 1-3
“-verif-version verif-version” on page 1-3
“-voa (Deprecated)” on page 1-4
“-keep-all-files” on page 1-4
“-continue-with-red-error (Deprecated)” on page 1-4
“-continue-with-existing-host” on page 1-5
“-allow-unsupported-linux” on page 1-5
“-sources "files" or -sources-list-file file_name” on page 1-6
“-extensions-for-spec-files and -ada-include-dir” on page 1-7
“-results-dir directory” on page 1-8
“-pre-analysis-command file or "command"” on page 1-9
“-post-analysis-command file or "command"” on page 1-10

Overview
This section collates all options relating to the identification of the verification,
including the destination directory for the results and sources.

-prog program-name
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.

Default:

1-2

General Options

Shell Script:polyspace

GUI:New_Project

Example shell script entry:

polyspace-ada -prog myApp ...

-date date
This option specifies a date stamp for the verification in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Default:

Day of launching the verification

Example shell script entry:

polyspace-ada -date "02/01/2002"...

-author author-name
This option is used to specify the name of the author of the verification.
Default: the name of the author is the result of the whoami command
Example shell script entry: polyspace-ada -author "John Tester"

-verif-version verif-version
Specifies the version identifier of the verification. This option can be used to
identify different verifications. This information is identified in the GUI as the
Version. Default: 1.0. Example shell script entry: polyspace-ada
-verif-version 1.3 ...

1-3

1 Options Description

-voa (Deprecated)

Note This option is deprecated in R2009a and later releases. VOA checks
are now enabled by default.

To disable VOA checks, you can use the option -extra-flags -no-voa.

This option enables the inspection of calculated domains for simple type
assignments (scalar or float).

VOA checks are generated on "="of some scalar assignments to give the
ranges. VOA checks are not available for volatile variables.

Default:

Enabled.

Note Depending on code optimization, this check may not be present at all
assignment locations

-keep-all-files
When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart PolySpace™ from the end
of any complete pass (provided the source code remains entirely unchanged).
If this option is not used, it is only possible to restart PolySpace from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by PolySpace.

-continue-with-red-error (Deprecated)

Note This option may yield invalid results when used improperly.

1-4

General Options

Ordinarily, red errors (other than NTC) prevent PolySpace from continuing to
the next integration pass. This option allows PolySpace to continue even if
one of these red errors is encountered. In most cases, this will mean that the
dynamic behavior of the code beyond the point where red errors are identified
will be undefined, unless the red code is actually inaccessible.

When using this option it is not rare to when opening some results, a strange
red error is encountered. it could be interesting to open results at level 1
(pass1) to verify that some other red errors have not been highlighted.

Default:

PolySpace stops upon finding red errors.

Example shell script entry :

polyspace-ada -continue-with-red-error ...

-continue-with-existing-host
When this option is set, the verification will continue even if the system is
under specified or its configuration is not as preferred by PolySpace. Verified
system parameters include the amount of RAM, the amount of swap space,
and the ratio of RAM to swap. Default: PolySpace stops when the host
configuration is incorrect or the system is under specified. Example Shell
Script Entry: polyspace-ada -continue-with-existing-host ...

-allow-unsupported-linux
This option specifies that PolySpace will be launched on an unsupported OS
Linux® distribution.

PolySpace software supports the Linux distributions listed in “Hardware and
Software Requirements” in the PolySpace Installation Guide.

For all other Linux distributions, you may be able to verify code using the
-allow-unsupported-linux option, but a warning will be displayed in the
log file informing you of possible incorrect behaviors:

** ***

1-5

1 Options Description

*** ***
*** WARNING ***
*** ***
*** You are running PolySpace on an ***
*** unsupported Linux distribution. It may lead ***
*** to incorrect behaviour of the product. Please ***
*** note that no support will be available for ***
*** this operating system. ***
*** ***
** ** ***

Default:

Disable

Example Shell Script Entry:

polyspace-ada allow-unsupported-linux ...

-sources "files" or -sources-list-file file_name
-sources "file1[file2[...]]" (linux and solaris)

or

-sources "file1[,file2[, ...]]" (windows, linux and solaris)

or

-sources-list-file file_name

It gives the list of source files to be verified, double-quoted and separated by
commas. The specified files must have valid extensions:

(A|a)d(a|b|s) for Ada

Defaults:

1-6

General Options

sources/*.(A|a)d(a|b|s) for Ada

Examples under linux or solaris:

polyspace-ada -sources "my_directory/mod*.ad[sb]" ...

Examples under windows:

polyspace-ada -sources "spc/mod1.ads,bod/mod1.adb" ...

Using -sources-list-file in batch mode, the syntax of the file is the following:

• one file by line.

• file names are given with absolute or relative path. See -sources-list-file
option.

-extensions-for-spec-files and -ada-include-dir
The -extensions-for-specs-files option specifies the file extension for files "F"
which will be verified to get the type/variables names but which are not part
of the -sources list.

It’s like having a dictionary with only the list of words and their type (verb,
noun, adj) without the definition. These files will allow the product to know
the name and the type, but not the values (dictionary definitions).

The -ada-include-dir specifies the directory where the F files are located.
However, the option can be used several times and more than one directory
can be specified

Note Both options must be used together.

Benefits:

• faster compilation on these packages in order to focus on the -sources
packages specifications and bodies

1-7

1 Options Description

• full range for all constants defined in these packages: let’s consider 1
package body B and 2 specifications S1 and S2

Usage examples using the graphical interface:

configuration 1:

• -sources contains B.ada and S1.ada

• -extensions-for-specs-files contains the *.ada filter

• -ada-include-dir contains the TEST folder and the TEST folder contains
S2.ada

configuration 2:

• -sources contains B.ada, S1.ada, S2.ada

• If a constant S2.C is used

- in configuration 1: its value will be its full range

- in configuration 2: its value will be the real constant value

Usage examples in shell entry-script mode:

polyspace-desktop-ada -sources "B.ada,S1.ada"
-extensions-for-specs-files "*.ada" -ada-include-dir
./include_specs

polyspace-desktop-ada -sources sources/example.ad*
-extensions-for-spec-files "*.ad?" -ada-include-dir "sources"

-results-dir directory
This option specifies the directory in which PolySpace will write the results
of the verification. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
is to be copied using the "Save as" option. Default: Shell Script: The
directory in which tool is launched. From Graphical User Interface:
C:\PolySpace_Results Example Shell Script Entry: polyspace-ada

1-8

General Options

-results-dir RESULTS ... export RESULTS=results_`date
+%d%B_%HH%M_%A` polyspace-ada -results-dir `pwd`/$RESULTS ...

-pre-analysis-command file or "command"
When this option is used, the specified script file or command is run before the
verification phase on each source file.

The command should be designed to process the standard output from source
code and produce its results in accordance with that standard output.

Default:

No command.

Example Shell Script Entry – file name:

To replace the keyword “Volatile” by “Import”, you can type the following
command on a Linux workstation:

polyspace-ada -pre-analysis-command `pwd`/replace_keywords

where replace_keywords is the following script :

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

1-9

1 Options Description

Note If you are running PolySpace software Version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_ADA%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows®
workstation, you must use the option -pre-analysis-command with the
absolute path to the Perl script, for example:

%POLYSPACE_ADA%\Verifier\bin\polyspace-cpp.exe
-pre-analysis-command
%POLYSPACE_ADA%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

-post-analysis-command file or "command"
When this option is used, the specified script file or command is executed
once the verification has completed.

The script or command is executed in the results directory of the verification.

Execution occurs after the last part of the verification. The last part of is
determined by the –to option.

Note Depending on the architecture used, notably when using a sever
verification, the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

1-10

General Options

This example shows how to send an email to indicate to the client that the
verification is complete. The command looks like:

polyspace-ada -post-analysis-command `pwd`/end_email

where end_email is an appropriate Perl script:

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_ADA%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use this option with the absolute path to the Perl
script, for example:

%POLYSPACE_ADA%\Verifier\bin\polyspace-cpp.exe
-post-analysis-command
%POLYSPACE_ADA%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\end_emails

1-11

1 Options Description

Target/Compiler Options

In this section...

“-target target-name” on page 1-12
“-OS-target OperatingSystemTarget” on page 1-12

-target target-name
Specify the target processor type. This option helps PolySpace to know the size
of fundamental data types and whether your machine is big or little endian.

Possible values are: sparc, m68k, 1750a, powerpc64bit, powerpc32bit and
i386.

Default:

sparc

Example:

polyspace-ada -target m68k ...

-OS-target OperatingSystemTarget
It specifies the Operating system target for Standard Libraries compatibility
for PolySpace stubs. This option allows PolySpace to support implementation
specific declarations contained in the Ada standard libraries.

Possible values are 'gnat', 'greenhills' and 'no-predefined-OS'.

Default:

no-predefined-OS. Note that this option allows gnat includes.

1-12

Target/Compiler Options

Note Only the ’gnat’ include files are provided with PolySpace
(see the “adainclude” folder in the installation directory). Projects
developed for use with other operating systems may be verified by
using the corresponding include files for that OS. For instance, in
order to verify a ‘greenhills’ project it is necessary to use the option
–ada-include-dir<path_to_the_greenhills_include_folder>.

This set of includes is not delivered with the product.

Example shell script entry:

polyspace-ada -OS-target gnat

polyspace-ada -OS-target greenhills -ada-include-dir
/complete_path_to/greenhills_includes ...

1-13

1 Options Description

Compliance with Standards Options

In this section...

“-storage-unit number” on page 1-14
“-base-type-directly-visible” on page 1-15
“Permissiveness/Strictness” on page 1-16

-storage-unit number
Allows to choose the value of the constant SYSTEM.Storage_Unit. This
constant is defined in the SYSTEM package. If this option is set, a strictly
positive number, the value found in the SYSTEM package will be ignored

Default

The default value of the constant is 8 except for the target 1750a, which is 16.

Example

-- Definition of record type
type REC is record
A : integer;
B : boolean;

end REC;
-- Representation clause of this record
for REC use record
A at 0 range 0 .. 31;
B at 1 range 0 .. 31;

end record

With a target defining 8 as storage unit value, the error "A overlaps B"
appears because the value of SYSTEM.Storage_Unit is 8. In the example, this
value need to be 32. The use of -storage-unit 32, removes the error message
and allows to compute the size of REC.

1-14

Compliance with Standards Options

-base-type-directly-visible
Standard Ada is ambiguous on visibility of comparison and equality operators
(=,/=,<=,=>, >, <). This option allows removing some ambiguities.

In case of compilation error concerning visibility of comparison and equality
operators, such as:

• "ambiguous expression (cannot resolve "<=")

• "operator for type "X" defined at ./example.ada:2 is not directly visible use
clause would make operation legal

Setting the option can make the code legal"

Default:

• It is the type of the operand that matters to determine whether the
operator is visible

• For overloaded functions, potentially use visible means use visible for sure

Ada example:

Package A is
type T1 is new Integer range 0 .. 100; -- line 1

end A;
-- Other file:example1.adb

with A; use A;
Package B is
subtype T2 is T1 range 2..80;

end B;

Package OTHER_IABC_ADA_4 is
procedure Main;

end OTHER_IABC_ADA_4;

with B; use B;
Package body OTHER_IABC_ADA_4 is
X, Y : T2;

procedure Main is
begin

1-15

1 Options Description

null;
pragma Assert (TRUE);

end Main;
begin
X := 12;
Y := 10;
if X > Y then -- line 21
pragma Assert (True);
null;
end if;

end OTHER_IABC_ADA_4;

Without the option, an error message appears:

• PolySpace found an error in ./example1.adb:21:07: operator for type "T1"
defined at ./example1.adb:1 is not directly visible.

• PolySpace found an error in /example1.adb:21:07: use clause would make
operation legal

With the option, there is no error message.

Shell script command:

polyspace-ada -base-type-directly-visible ...

Permissiveness/Strictness
Verification mode has two options: -permissive and -strict.

When either of these two options is selected, the following options may be
selected independently: -no-automatic-stubbing, -continue-with-in-out-niv
and –continue-with-all-niv.

-permissive
Permissive mode of PolySpace. Equivalent to -continue-with-in-out-niv and
–continue-with-red-error.

1-16

Compliance with Standards Options

-continue-with-in-out-niv
Ada Standard requires that in/out parameters of a procedure must be
initialized. With this option, such a variable is still detected as a red
NIV but the following code won’t be unreachable and this red error
won’t have any impact on the verification. This option may be used with
–continue-with-red-error.

Default:

If a variable has not been initialized AND is passed to a procedure as an
in/out parameter, PolySpace indicates a red NIV and the rest of code is gray
(dead code).

Example:

procedure test(x : in out Integer) is
begin
x := 10;

end
procedure main is
T : integer;
begin
test(T); -- red NIV on T with or without the option
T := T + 1; -- gray code on this line by default,
green with -continuewith-
in-out-niv

end Main;

Note If some in/out NIV are detected (in level 1 for instance), the verification
will stop at the end of the Software Safety level 1, as for any other red error
detection. In order for the verification to continue (in level 2, 3, 4 in this case),
the user must set the option –continue-with-red-error.

-strict
Strict mode of PolySpace.

In Ada, equivalent to -no-automatic-stubbing

1-17

1 Options Description

-no-automatic-stubbing
Missing body of procedures or functions (functions and procedures that are
declared but not defined) cause PolySpace to stop.

Defaults:

All procedures and functions are stubbed automatically according to their
specification. The rules are the following:

The generated stub is the most general possible body derived from its
prototype.

• Implicit and explicit tasks cannot be stubbed.

• The main procedure cannot be stubbed.

• The generated stubs cannot have any side effects on global variables. If a
function with global side effects must be stubbed, it must be done by hand.

Benefits:

You may want to use this option for several reasons

• You want to make sure the entire code is provided: this can be the case
when verifying a large piece of code. When the verification stops, it means
the code is not complete: it will avoid the user surprises to see a code with
stubs instead of the original code he was expecting

• You want to write stubs himself to increase the selectivity and speed of
the verification.

Example:

polyspace-ada -no-automatic-stubbing -main ...

-continue-with-all-niv
Detect all non initialized variables (NIV). Without this option, Verification
stops after the first red NIV.

1-18

Compliance with Standards Options

Warning: Precision loss when using this option. It should only be set for the
1st run of a project. This option may be used with -continue-with-red-error.

Default:

If a variable has not been initialized, PolySpace indicates a red NIV and
the rest of the procedure is gray (dead code). All remaining checks in the
procedure are gray.

Example:

This example contains 3 red NIV: by default, only the first one can be detected.
With the -continue-with-all-niv option, all 3 will be detected at once, at the
end of Level 1 verification.

procedure Main is
I,T,No: Integer;

begin
if (No = 0) -- red NIV, with or without the option
then
I := 1/I; -- gray code by default, red NIV with the option

end if;
if (T = 0) -- gray code by default, red NIV with the option
then
I := 12312409 /120;

end if;
end Main;

Note If some NIV are detected (in level 1 for instance), the verification will
stop at the end of the Software Safety level 1, as for any other red error
detection. In order for the verification to continue (in level 2, 3, 4 in this case),
the user must set the option -continue-with-red-error.

1-19

1 Options Description

PolySpace Inner Settings Options

In this section...

“-main main_subprogram_name” on page 1-20
“-main-generator” on page 1-20
“Stubbing” on page 1-21
“Assumptions” on page 1-22
“-machine-architecture” on page 1-23
“-max-processes” on page 1-24
“Others” on page 1-24

-main main_subprogram_name
The option specifies the qualified name of the main subprogram. This
procedure will be verified after package elaboration, and before tasks in case
of a multi-task application or in case of the -entry-points usage.

Note This option is exclusive with -main-generator.

Example:

polyspace-ada -main mainpackage.init ...

-main-generator
The -main-generator is exclusive with the -main option.

The -main-generator option will create automatically a procedure which calls
every non called procedure within the code, avoiding for instance to create
manually a main.

Notes for PolySpace Client and PolySpace Server:

1-20

PolySpace™ Inner Settings Options

• For PolySpace Client: the -main-generator option is set by default and the
-main option can replace it if activated

• For PolySpace Server: the -main option is set by default and the
-main-generator option can replace it if activated

Example shell script entry:

polyspace-ada -main-generator ...
polyspace-desktop-ada ... (implicit -main-generator active)
polyspace-desktop-ada -main myPack.main ...
(implicit -main-generator canceled by the usage of -main)

Stubbing

• “-import-are-not-volatile” on page 1-21

• “-export-are-not-volatile” on page 1-21

• “-init-stubbing-vars-random” on page 1-21

• “-init-stubbing-vars-zero-or-random” on page 1-22

-import-are-not-volatile
If a variable has a pragma import(C|ASM|other, my_variable), it’s then
considered as volatile by PolySpace. With this option, they are considered
as regular variables. Default Imported variable are volatile Example
polyspace-ada -import-are-not-volatile -main ...

-export-are-not-volatile
If a variable has a pragma export(C|ASM|other, my_variable), it’s then
considered as volatile by PolySpace. With this option, they are considered
as regular variables. Default Exported variable are volatile Example
polyspace-ada -export-are-not-volatile

-init-stubbing-vars-random
Force initialization of uninitialized global variables to a random value.

Default:

1-21

1 Options Description

Uninitialized global variables give warnings or errors, depending on the
context.

Example:

polyspace-ada -init-stubbing-vars-random -main...

-init-stubbing-vars-zero-or-random
Initialize uninitialized globals variables:

• with zero if the type contains zero,

• with random otherwise

Default:

Uninitialized global variables give warnings or errors, depending on the
context.

Example:

polyspace-ada -init-stubbing-vars-zero-or-random -main ...

Assumptions

• “-ignore-float-rounding” on page 1-22

• “-known-NTC proc1[,proc2[,...]]” on page 1-23

-ignore-float-rounding
Without this option, PolySpace rounds floats according to the IEEE 754
standard: simple precision on 32-bits targets and double precision on
target which define double as 64-bits. With the option, exact computation
is performed.

Default:

IEEE 754 rounding under 32 bits and 64 bits.

1-22

PolySpace™ Inner Settings Options

Example Shell Script Entry :

polyspace-ada -ignore-float-rounding ...

-known-NTC proc1[,proc2[,...]]
After a few verifications, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops
by design, while functions that exit the program such as kill_task , exit or
Terminate_Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC specified
at launch will appear in the viewer in the known-NTC category, and filtering
will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :

polyspace-ada -known-NTC "kill_task,exit"

polyspace-ada -known-NTC "Exit,Terminate_Thread"

-machine-architecture
This option specifies whether verification runs in 32 or 64-bit mode.

Note You should only use the option -machine-architecture 64 for
verifications that fail due to insufficient memory in 32 bit mode. Otherwise,
you should always run in 32–bit mode.

Available options are:

1-23

1 Options Description

• -machine-architecture auto – Verification always runs in 32-bit mode.

• -machine-architecture 32 – Verification always runs in 32-bit mode.

• -machine-architecture 64 – Verification always runs in 64-bit mode.

Default:

auto

Example Shell Script Entry:

polyspace-ada -machine-architecture auto

-max-processes
This option specifies the maximum number of processes that can run
simultaneously on a multi-core system. The valid range is 1 to 128.

Note To disable parallel processing, set: -max-processes 1.

Default:

4

Example Shell Script Entry:

polyspace-ada -max-processes 1

Others

• “-extra-flags option-extra-flag” on page 1-24

• “-ada95-extra-flags extra-flag (Ada95 only)” on page 1-25

-extra-flags option-extra-flag
This option specifies an expert option to be added to the verification. Each
word of the option (even the parameters) must be preceded by -extra-flags.

1-24

PolySpace™ Inner Settings Options

These flags will be given to you by PolySpace Support as necessary for
your verifications. Default: No extra flags. Example Shell Script
Entry: polyspace-ada -extra-flags -param1 -extra-flags -param2
\ -extra-flags 10 ...

-ada95-extra-flags extra-flag (Ada95 only)
This option specifies an expert option to be added to the verification.
Each word of the option (even the parameters) must be preceded by
–ada95-extra-flags.

These flags will be given to you by PolySpace Support as necessary for your
verifications.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-ada ada95-extra-flags -param1...

1-25

1 Options Description

Precision Options

In this section...

“-from verification-phase” on page 1-26
“-to verification-phase” on page 1-27
“-O(0-3)” on page 1-28
“-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]” on page 1-29
“-array-expansion-size number” on page 1-29
“-path-sensitivity-delta number” on page 1-30
“-variables-to-expand var1[,var2[,...]]” on page 1-31
“-variable-expansion-depth number” on page 1-31

-from verification-phase
This option specifies the verification phase to start from. It can only be used
on an existing verification, possibly to elaborate on the results that you have
already obtained.

For example, if a verification has been completed -to pass1, PolySpace can be
restarted -from pass1 and hence save on verification time.

The option is usually used in a verification after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Notes :

• This option can only be used for client verifications. All server verifications
start from scratch.

• Unless the scratch option is used, this option can be used only if the
previous verification was launched using the option -keep-all-files .

1-26

Precision Options

• This option cannot be used if you modify the source code between
verifications.

Default :

scratch

Example Shell Script Entry :

polyspace-ada -from pass0 ...

-to verification-phase
Specifies the verification phase after which PolySpace will stop.

Benefits:

This option allows you to have a higher selectivity, and therefore to find more
bugs within the code.

• A higher integration level contributes to a higher selectivity rate, leading
to "finding more bugs" with a given code.

• A higher integration level also means longer verification time

Possible values:

• compile or “Source Compliance Checking”

• pass0 or CDFA or "Control and Data Flow Analysis"

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4"

• other

Note:

1-27

1 Options Description

If you use -to other then PolySpace will continue until you stop it manually
(via kill-rte-kernel) or it has reached pass20.

Default:

pass4

Example Shell Script Entry:

polyspace-ada -to "Software Safety Analysis level 3"...

polyspace-ada -to pass0 ...

-O(0-3)
This option specifies the precision level to be used during verification. It
provides higher selectivity in exchange for longer verification time, therefore
making results review more efficient and hence making bugs in the code
easier to isolate. It does so by specifying the algorithms used to model the
program state space during verification.

We recommend beginning verification with the -O0 option. Red errors and
gray code can then be addressed before relaunching PolySpace using this
option to apply a higher precision level as described below.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means a longer verification time

•

- -O0 corresponds to static interval verification.

- -O1 corresponds to a complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms that closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

1-28

Precision Options

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long verification time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-ada -O1 -to pass4 ...

-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
This option is used to specify the list of Ada packages to be verified with a
different precision from that specified generally -O(0..3) for the verification.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default: All modules are treated with the same precision. Example
Shell Script Entry: polyspace-ada -O1 \ -modules-precision
myMath:O2,myText:O1, ...

-array-expansion-size number
This option forces PolySpace to verify each cell of global variable arrays
having length less than or equal to number as a separate variable.

Warning:

Increasing the number of global variables to be verified will have an impact
on the verification time. This option has an impact only on the Global Data
Dictionary results.

Default:

The default value is 3.

1-29

1 Options Description

Example:

polyspace-ada -O1 -array-expansion-size 8 -main ...

-path-sensitivity-delta number
This option is used to improve interprocedural verification precision within
a particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer verification time.

Consider two verification, one with this option set to 1 (with), and one without
this option (without)

• a level 1 verification set to (with) (pass1) will provide results equivalent to
a level 1 or 2 verification set to (without).

• a level 1 verification set to (with) can last x times longer than a cumulated
level 1+2 verification set to (without). Note that "x" might be exponential.

• the same applies to a level 2 verification set to (with): it is equivalent to
a level 3 or 4 set to (without), with a potentially exponential verification
time for (a)

Gains using the option

• (+) The highest selectivity is achieved in level 2, so there is no need to
wait until level 4.

• (-) This parameter may exponentially increase verification time and might
result in an even longer verification time than for a cumulated verification
of level 1+2+3+4.

• (-) This option can only be used for packages with less than 1000 lines
of code.

Default:

0

Example Shell Script Entry:

1-30

Precision Options

polyspace-ada -path-sensitivity-delta 1 ...

-variables-to-expand var1[,var2[,...]]
Specifies aggregate variables (record, ...) that will be split into independent
variables for the purpose of verification. This option has an impact on
the Global Data Dictionary results. Use with -variable-expansion-depth.
Default: Depending on complexity issues, fields in records may not be
individually verified. Example: polyspace-ada -variables-to-expand
pkg.rec1,pkg2.recF \ -variable-expansion-depth 4 -main ...

-variable-expansion-depth number
Indicate the maximum depth for expansion of variables specified by the
-variables-to-expand option. So, it is mandatory first to specify which
variables need to be expanded first.

Warning:

Increasing the number of global variables to be verified will have an impact
on the verification time. This option has an impact only on the Global Data
Dictionary results.

Default:

There is no default.

Example:

Consider the following code:

Package foo is
Type Internal is
Record
FieldI : Integer;
FieldII : Integer;

End Record ;
Type External is
Record
Data : Internal ;

1-31

1 Options Description

FieldE : Integer;
End Record ;
myVar : External ;

End foo;

Effects of different expansion depths if you use -variables-to-expand
foo.myVar :

• -variable-expansion-depth 1 : the concurrent access verification is
made on foo.myVar.FieldE and foo.myVar.Data which means that if each
access on Data is protected by critical section but FieldE is not protected,
then Data will be flagged as protected (green entry in the Global Data
Dictionary) and FieldE as not protected (orange entry)

• -variable-expansion-depth 2 : the verification is made on
foo.myVar.FieldE, foo.myVar.Data.FieldI and foo.myVar.Data.FieldII :
each variable will be flagged independently

foo.myVar is flagged as shared if any of its field are shared; it is flagged as
non-protected if any of its fields are not protected.

Example (the previous one, implemented): polyspace-ada
-variables-to-expand pakcage_foo.myVar \
-variable-expansion-depth 1 -main ...

1-32

Multitasking Options (PolySpace™ Server Only)

Multitasking Options (PolySpace Server Only)

In this section...

“-entry-points str1[,str2[,...]]” on page 1-33
“-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"” on page 1-33
“-temporal-exclusions-file file_name” on page 1-34

Note Concurrency options are not compatible with the “-main-generator”
on page 1-20 option.

-entry-points str1[,str2[,...]]
This option is used to specify the tasks/entry points to be verified by
PolySpace, using a comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Moreover, when tasks are declared with Ada task keyword, PolySpace takes
them into account automatically.

Example Shell Script Entry:

polyspace-ada -entry-points proc1,proc2,proc3 ...

-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with

1-33

1 Options Description

list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,
with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-ada -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

-temporal-exclusions-file file_name
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Default:

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

1-34

Multitasking Options (PolySpace™ Server Only)

Example Shell Script Entry :

polyspace-ada -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

1-35

1 Options Description

Batch Options

In this section...

“-server server_name_or_ip[:port_number]” on page 1-36
“-h[elp]” on page 1-36
“-v | -version” on page 1-37
“-sources-list-file file_name” on page 1-37

-server server_name_or_ip[:port_number]
Using polyspace-remote[-desktop]-[ada] [server [name or IP
address][:<port number>]] allows you to send a verification to a specific or
referenced PolySpace server.

Note If the option –server is not specified, the default server referenced in
the PolySpace-Launcher.prf configuration file will be used as the server.

When a –server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-desktop-ada server 192.168.1.124:12400

polyspace-remote-ada

polyspace-remote-ada server Bergeron

-h[elp]
Displays simple help in the shell window that provides information on all
options.

1-36

Batch Options

Example Shell Script Entry:

polyspace-ada h

-v | -version
Displays the PolySpace version number.

Example Shell Script Entry:

polyspace-ada v

It will show a result similar to:

PolySpace r2008b

Copyright (c) 1999-2008 The Mathworks, Inc.

-sources-list-file file_name
This option is only available in batch mode. The syntax of file_name is the
following:

• One file per line.

• Each file name includes its absolute or relative path.

Example Shell Script Entry for -sources-list-file:

polyspace-ada -sources-list-file "C:\Analysis\files.txt"

polyspace-ada -sources-list-file "files.txt"

1-37

1 Options Description

1-38

2

Check Descriptions

2 Check Descriptions

Colored Source Code for Ada

In this section...

“Non-Initialized Variable: NIV/NIVL” on page 2-3
“Division by Zero: ZDV” on page 2-7
“Arithmetic Exceptions: EXCP” on page 2-8
“Scalar and Float Underflow/Overflow : UOVFL” on page 2-11
“Scalar and Float Overflow: OVFL” on page 2-12
“Scalar and Float Underflow: UNFL” on page 2-13
“Attributes Check: COR” on page 2-15
“Array Length Check: COR” on page 2-18
“DIGITS Value Check: COR” on page 2-19
“DELTA Value Length Check: COR” on page 2-20
“Static Range and Values Check: COR” on page 2-21
“Discriminant Check: COR” on page 2-23
“Component Check: COR” on page 2-24
“Dimension Versus Definition Check: COR” on page 2-25
“Aggregate Versus Definition Check: COR” on page 2-27
“Aggregate Array Length Check: COR” on page 2-28
“Sub-Aggregates Dimension Check: COR” on page 2-29
“Characters Check: COR” on page 2-31
“Accessibility Level on Access Type: COR” on page 2-32
“Explicit Dereference of a Null Pointer: COR” on page 2-34
“Accessibility of a Tagged Type: COR” on page 2-35
“Power Arithmetic: POW” on page 2-36
“User Assertion: ASRT” on page 2-38
“Non Terminations: Calls and Loops” on page 2-39
“Unreachable Code: UNR” on page 2-49

2-2

Colored Source Code for Ada

In this section...

“Value on Assignment: VOA” on page 2-51
“Inspection Points: IPT” on page 2-53

Non-Initialized Variable: NIV/NIVL
Check to establish whether a variable is initialized before being read.

Examples

Ada Example.

1 package NIV is
2 type Pixel is
3 record
4 X : Integer;
5 Y : Integer;
6 end record;
7 procedure MAIN;
8 function Random_Bool return Boolean;
9 end NIV;
10
11 package body NIV is
12
13 type TwentyFloat is array (Integer range 1.. 20) of Float;
14
15 procedure AddPixelValue(Vpixel : Pixel) is
16 Z : Integer;
17 begin
18 if (Vpixel.X < 3) then
19 Z := Vpixel.Y + Vpixel.X; -- NIV error: Y field
20 not initialized
21 end if;
22 end AddPixelValue;
23
24 procedure MAIN is
25 B : Twentyfloat;
26 Vpixel : Pixel;

2-3

2 Check Descriptions

27 begin
28 if (Random_Bool) then
29 Vpixel.X := 1;
30 AddPixelValue(Vpixel); -- NTC Error: because of NIV error
31 in call
32 end if;
33
34 for I in 2 .. Twentyfloat'Last loop
35 if ((I mod 2) = 0) then
36 B(I) := 0.0;
37 end if;
38 end loop;
39 B(2) := B(4) + B(5); -- NIV Warning because
40 B(odd) not initialized
41 end MAIN;
42
43 end NIV;

Explanation. The result of the addition is unknown at line 19 because
Vpixel.Y is not initialized (gray code on "+" operator). In addition, line 37
shows how PolySpace prompts the user to investigate further (orange NIV
warning on B(I)) when all fields have not been initialized.

NIV Check vs. IN OUT Parameter Mode. Standard Ada83 says: For
a scalar parameter, the above effects are achieved by copy: at the start of
each call, if the mode is in or in out, the value of the actual parameter is
copied into the associated formal parameter; then after normal completion
of the subprogram body, if the mode is in out or out, the value of the formal
parameter is copied back into the associated actual parameter.

Clearly, in out parameters necessitate initialization before call.

Ada Example.

1 package NIVIO is
2 procedure MAIN;
3 function Random_Boolean return Boolean;
4 end NIVIO;
5
6 package body NIVIO is

2-4

Colored Source Code for Ada

7
8 Y : Integer := 3;
9 procedure Niv_Not_Dangerous(X : in out integer) is
10 begin
11 X := 2;
12 if (Y > 2) then
13 Y := X + 3;
14 end if ;
15 end Niv_Not_Dangerous;
16
17 procedure Niv_Dangerous(X : in out integer) is
18 begin
19 if (Y /= 3) then
20 Y := X + 3;
21 end if ;
22 end Niv_Dangerous;
23
24 procedure MAIN is
25 X : Integer;
26 begin
27 if (Random_Boolean) then
28 Niv_Dangerous(X); -- NIV ERROR: certainly dangerous
29 end if ;
30 if (Random_Boolean) then
31 Niv_Not_dangerous(X); -- NIV ERROR: not dangerous
32 End if ;
33 end MAIN;
34
35 end NIVIO;

Explanation. In the previous example, as shown at line 28, PolySpace
highlights a dangerous non-initialized variable. Even if it is not dangerous, as
shown in the Niv_Not_Dangerous procedure, PolySpace also highlights the
non-initialized variable at line 30. To be more permissive with standard, the
-continue-with-in-out-niv option permits to continuation of the verification
for the rest of the sources even if a red error stays in place at lines 28 and 31.

Pragma Interface/Import
The following table illustrates how variables are regarded when:

2-5

2 Check Descriptions

• A pragma is used to interface the code;

• An address clause is applied;

• A pointer type is declared.

Records and Other
Variable Types

Integer Variable
Types

Function

pragma interface
(C,
variable_name)
pragma import (C,
variable_name)

• green NIV

• Permanent random
value

• No NIV check

• Permanent random
value

• same behavior as -
automatic-stubbing

• in/out and out
variables are
written within
their entire type
range

In this case, a permanent random value means that the variable is always
equivalent to the full range of its type. It is almost equivalent to a volatile
variable except for the color of the NIV.

Type Access Variables
The following table illustrates how variables are verified by PolySpace when
a type access is used:

Records and Other
Variable Types

Integer Variable
Types

Type a_new_type is
access another_type;

• orange NIV

• Permanent random
value

• No NIV check

• Permanent random
value

In this case, a Permanent Random Variable is exactly equivalent to a volatile
variable - that is, it is assumed that the value can have been changed to
anywhere within its whole range between one read access and the next.

2-6

Colored Source Code for Ada

Address Clauses
The following table illustrates how variables are regarded by PolySpace
where an address clause is used.

Address Clause Records and
Other Variable
Types

Integer Variable
Types

for variable_name'address use
16#1234abcd#;
for
variable_name'other'address
use;

• orange NIV

• Permanent
random value

• No NIV check

• Permanent
random value

In this case, a Permanent Random Variable is exactly equivalent to a volatile
variable - that is, it is assumed that the value can have been changed to
anything within its whole range between one read access and the next.

Division by Zero: ZDV
Check to establish whether the right operand of a division (denominator) is
different to 0[.0].

Ada Example:

1 package ZDV is
2 function Random_Bool return Boolean;
3 procedure ZDVS (X : Integer);
4 procedure ZDVF (Z : Float);
5 procedure MAIN;
6 end ZDV;
7
8 package body ZDV is
9
10 procedure ZDVS(X : Integer) is
11 I : Integer;
12 J : Integer := 1;
13 begin
14 I := 1024 / (J-X); -- ZDV ERROR: Scalar Division by Zero
15 end ZDVS;

2-7

2 Check Descriptions

16
17 procedure ZDVF(Z : Float) is
18 I : Float;
19 J : Float := 1.0;
20 begin
21 I := 1024.0 / (J-Z); -- ZDV ERROR: float Division by Zero
22 end ZDVF;
23
24 procedure MAIN is
25 begin
26 if (random_bool) then
27 ZDVS(1); -- NTC ERROR: ZDV.ZDVS call never terminates
28 end if ;
29 if (Random_Bool) then
30 ZDVF(1.0); -- NTC ERROR: ZDV.ZDVF call never terminates
31 end if;
32 end MAIN;
33
34 end ZDV;
35
36
37

Arithmetic Exceptions: EXCP
Check to establish whether standard arithmetic functions are used with good
arguments:

• Argument of sqrt must be positive

• Argument of tan must be different from pi/2 modulo pi

• Argument of log must be strictly positive

• Argument of acos and asin must be within [-1..1]

• Argument of exp must be less than or equal to a specific value which
depends on the processor target: 709 for 64/32 bit targets and 88 for 16 bit
targets

Basically, an error occurs if an input argument is outside the domain over
which the mathematical function is defined.

2-8

Colored Source Code for Ada

Ada Example

1
2 With Ada.Numerics; Use Ada.Numerics;
3 With Ada.Numerics.Aux; Use Ada.Numerics.Aux;
4
5 package EXCP is
6 function Bool_Random return Boolean;
7 procedure MAIN;
8 end EXCP;
9
10 package body EXCP is
11
12 -- implementation dependant in Ada.Numerics.Aux: subtype
Double is Long_Float;
13 M_PI_2 : constant Double := Pi/2.0; -- pi/2
14
15 procedure MAIN is
16 IRes, ILeft, IRight : Integer;
17 Dbl_Random : Double;
18 pragma Volatile_ada.htm (dbl_Random);
19
20 SP : Double := Dbl_Random;
21 P : Double := Dbl_Random;
22 SN : Double := Dbl_Random;
23 N : Double := Dbl_Random;
24 NO_TRIG_VAL : Double := Dbl_Random;
25 res : Double;
26 Fres : Long_Float;
27 begin
28 -- assert is used to redefine range values of a variable.
29 pragma assert(SP > 0.0);
30 pragma assert(P >= 0.0);
31 pragma assert(SN < 0.0);
32 pragma assert(N <= 0.0);
33 pragma assert(NO_TRIG_VAL < -1.0 or NO_TRIG_VAL > 1.0);
34
35 if (bool_random) then
36 res := sqrt(sn); -- EXCP ERROR: argument of SQRT must be
positive.

2-9

2 Check Descriptions

37 end if ;
38 if (bool_random) then
39 res := tan(M_PI_2); -- EXCP Warning: Float argument of TAN

40 -- may be different than pi/2 modulo pi.
41 end if;
42 if (bool_random) then
43 res := asin(no_trig_val); -- EXCP ERROR: float argument of
ASIN is not in -1..1
44 end if;
45 if (bool_random) then
46 res := acos(no_trig_val); -- EXCP ERROR: float argument of
ACOS is not in -1..1
47 end if;
48 if (bool_random) then
49 res := log(n); -- EXCP ERROR: float argument of LOG is not
strictly positive
50 end if;
51 if (bool_random) then
52 res := exp(710.0); -- EXCP ERROR: float argument of EXP
is not less than or equal to 709 or 88
53 end if;
54
55 -- range results on trigonometric functions
56 if (Bool_Random) then
57 Res := Sin (dbl_random); -- -1 <= Res <= 1
58 Res := Cos (dbl_random); -- -1 <= Res <= 1
59 Res := atan(dbl_random); -- -pi/2 <= Res <= pi/2
60 end if;
61
62 -- Arithmetic functions where there is no check currently
implemented
63 if (Bool_Random) then
64 Res := cosh(dbl_random);
65 Res := tanh(dbl_random);
66 end if;
67 end MAIN;
68 end EXCP;

2-10

Colored Source Code for Ada

Explanation
The arithmetic functions sqrt, tan, sin, cos, asin, acos, atan and log are
derived directly from mathematical definitions of functions.

Standard cosh and tanh hyperbolic functions are currently assumed to return
the full range of values mathematically possible, regardless of the input
parameters. The Ada83 standard gives more details about domain and range
error for each maths function.

Scalar and Float Underflow/Overflow : UOVFL
Check to simultaneously establish whether an arithmetic expression on a
float value overflows and/or underflows.

Ada Example

1 package UOVFL is
2 function Bool_Random return Boolean;
3 procedure MAIN;
4 end UOVFL;
5
6 package body UOVFL is
7
8 procedure MAIN is
9 I : Integer;
10 DValue : Long_float;
11 begin
12 if (Bool_Random) then
13 I := 2**30;
14 I := 2 * (I - 1); -- integer UOVFL verified on "*" and "-"
15 end if;
16 if (Bool_Random) then
17 DValue := Long_float(Float'Last);
18 DValue := 2.0 * DValue + 1.0; -- float UOVFL verified on "*"
and "+"
19 end if;
20 end MAIN;
21 end UOVFL;

2-11

2 Check Descriptions

Explanation
PolySpace can detect that there is neither an underflow nor an overflow on *
and - operators at lines 16 and 18.

Scalar and Float Overflow: OVFL
Check to establish whether an arithmetic expression overflows. This is a
scalar check with integer types and a float check for floating point expressions.

An overflow is also detected should an array index_ada.htm be out of bounds.

Ada Example

1 package OVFL is
2 procedure MAIN;
3 function Bool_Random return Boolean;
4 end OVFL;
5
6 package body OVFL is
7
8 procedure OVFL_ARRAY is
9 A : array(1..20) of Float;
10 J : Integer;
11 begin
12 for I in A'First .. A'Last loop
13 A(I) := 0.0 ;
14 J := I + 1;
15 end loop;
16 A(J) := 0.0; -- OVFL ERROR: Overflow array index_ada.htm
17 end OVFL_ARRAY;
18
19 procedure OVFL_ARITHMETIC is
20 I : Integer;
21 FValue : Float;
22 begin
23
24 if (Bool_Random) then
25 I := 2**30;
26 I := 2 * (I - 1) +2 ; -- OVFL ERROR: 2**31 is an overflow

2-12

Colored Source Code for Ada

value for Integer
27 end if;
28 if (Bool_Random) then
29 FValue := Float'Last;
30 FValue := 2.0 * FValue + 1.0; -- OVFL ERROR: float variable
is overflow
31 end if;
32 end OVFL_ARITHMETIC;
33
34 procedure MAIN is
35 begin
36 if (Bool_Random) then OVFL_ARRAY; end if; -- NTC propagation
because of OVFL ERROR
37 if (Bool_Random) then OVFL_ARITHMETIC; end if;
38 end MAIN;
39
40 end OVFL;
41
42

Explanation
In Ada, the bounds of an array can be considered with reference to a new type
or subtype of an existing one. Line 16 shows an overflow error resulting from
an attempt to access element 21 in an array subtype of range 1..20.

A different example is shown by the overflow on line 26, where adding
1 to Integer’Last (the maximum integer value being 2**31-1 on a 32 bit
architecture platform). Similarly, if OVFL_ARITHMETIC.FValue represents
the max floating value, 2*FValue cannot be represented with the same type
and so raises an overflow at line 30.

Scalar and Float Underflow: UNFL
Check to establish whether an arithmetic expression underflows. This is a
scalar check with integer types and a float check for floating point expressions.

An underflow is also detected should an array index_ada.htm be out of bounds.

2-13

2 Check Descriptions

Ada Example

1 package UNFL is
2 function Bool_Random return Boolean;
3 procedure MAIN;
4 end UNFL;
5
6 package body UNFL is
7
8 procedure UNFL_ARRAY is
9 A : array(1..20) of Float;
10 J : Integer;
11 begin
12 for I in A'Last.. A'First loop
13 A(I) := 0.0 ;
14 J := I - 1;
15 end loop;
16 A(J) := 0.0; -- UNFL ERROR: underflow array index_ada.htm
17 end UNFL_ARRAY;
18
19 procedure UNFL_ARITHMETIC is
20 I : Integer;
21 FValue : Float;
22 begin
23
24 if (Bool_Random) then
25 I := -2**31;
26 I := I - 1 ; -- UNFL ERROR: -2**31-1 is integer underflow
27 end if;
28 if (Bool_Random) then
29 FValue := Float'First;
30 FValue := -2.0 * FValue; -- UNFL ERROR: float variable is
overflow
31 end if;
32 end UNFL_ARITHMETIC;
33
34 procedure MAIN is
35 begin
36 if (Bool_Random) then UNFL_ARRAY; end if; -- NTC propagation
because of UNFL

2-14

Colored Source Code for Ada

ERROR
37 if (Bool_Random) then UNFL_ARITHMETIC; end if;
38 end MAIN;
39
40 end UNFL;

Explanation
In Ada, the bounds of an array can be considered with reference to a new type
or subtype of an existing one. Line 16 shows an underflow error resulting
from an attempt to access element 0 in an array subtype of range 1..20.

A different example is shown by the underflow on line 26, where subtracting
1 from Integer’First (the minimum integer value being -2**31-1 on a 32 bit
architecture platform). Similarly, if UNFL_ARITHMETIC.FValue represents
the minimum floating value, -2*FValue cannot be represented with the same
type and so raises an underflow at line 30.

Attributes Check: COR
PolySpace encourages the user to investigate the attributes SUCC, PRED,
VALUE and SIZE further, thanks to a COR check (failure of CORrectness
condition).

Ada Example

1
2 package CORS is
3 function Bool_Random return Boolean;
4 procedure MAIN;
5 function INT_VALUE (S : String) return Integer;
6 type PSTCOLORS is (ORANGE, RED, GREY, GREEN);
7 type ADCFUZZY is (LOW, MEDIUM, HIGH);
8 end CORS;
9
10 package body CORS is
11
12 type STR_ENUM is (AA,BB);
13
14 function INT_VALUE (S : String) return Integer is

2-15

2 Check Descriptions

15 X : Integer;
16 begin
17 X := Integer'Value (S); -- COR Warning: Value parameter
might not be in range integer
18 return X;
19 end INT_VALUE;
20
21 procedure MAIN is
22 E : PSTCOLORS := GREEN;
23 F : PSTCOLORS;
24 ADCVAL : ADCFUZZY := ADCFUZZY'First;
25 StrVal : STR_ENUM;
26 X : Integer;
27 begin
28 if (Bool_Random) then
29 F := PSTCOLORS'PRED(E); -- COR Verified: Pred attribute
is not used on the first element of pstcolors
30 E := PSTCOLORS'SUCC(E); -- COR ERROR: Succ attribute is
used on the last element of pstcolors
31 end if;
32 if (Bool_Random) then
33 ADCVAL := ADCFUZZY'PRED(ADCVAL); -- COR ERROR: Pred
attribute is used on the first element of adcfuzzy
34 end if ;
35
36 StrVal := STR_ENUM'Value ("AA"); -- COR Warning: Value
parameter might not be in range str_enum
37 StrVal := STR_ENUM'Value ("AC"); -- COR Warning: Value
parameter might not be in range str_enum
38 X := INT_VALUE ("123"); -- Info on X: -2**31<=[expr]<=2**31-1
39 end MAIN;
40 end CORS;
41

Explanation
At line 36 and 37, the COR warning (orange) prompts the user to check
whether the VALUE attribute is correct or not.

2-16

Colored Source Code for Ada

In fact, standard ADA generates a "CONSTRAINT_ERROR" exception when
the string does not correspond to one of the possible values of the type.

Also note that in this case, PolySpace results assume the full possible range of
the returned type, regardless of the input parameters. In this example, strVal
has a range in [aa,bb] and X in [Integer’First, Integer’Last].

The incorrect use of PRED and SUCC attributes on type is indicated by
PolySpace.

SIZE Attribute Error: COR

1
2 with Ada.Text_Io; use Ada.Text_Io;
3
4 package SIZE is
5 PROCEDURE Main;
6 end SIZE;
7
8 PACKAGE BODY SIZE IS
9
10 TYPE unSTab is array (Integer range <>) of Integer;
11
12 PROCEDURE MAIN is
13 X : Integer;
14 BEGIN
15 X := unSTab'Size; -- COR ERROR: Size attribute must not be
used for unconstrained array
16 Put_Line (Integer'Image (X));
17 END MAIN;
18
19 END SIZE;

Explanation
At line 15, PolySpace shows the error on the SIZE attribute. In this case, it
cannot be used on an unconstrained array.

2-17

2 Check Descriptions

Array Length Check: COR
Checks the correctness condition of an array length, including Strings.

Ada Example

1
2 with Dname;
3 package CORL is
4 function Bool_Random return Boolean;
5 type Name_Type is array (1 .. 6) of Character;
6 procedure Put (C : Character);
7 procedure Put (S : String);
8 procedure MAIN;
9 end CORL;
10
11 package body CORL is
12
13 STR_CST : constant NAME_TYPE := "String";
14
15 procedure MAIN is
16 Str1,Str2,Str3 : String(1..6);
17 Arr1 : array(1..10) of Integer;
18 begin
19
20 if (Bool_Random) then
21 Str1 := "abcdefg"; -- COR ERROR: Too many elements in array
must have 6
22 end if;
23 if (Bool_Random) then
24 Arr1 := (1,2,3,4,5,6,7,8,9); -- COR ERROR: Not enough
elements in array, must have 10
25 end if ;
26 if (Bool_Random) then
27 Str1 := "abcdef";
28 Str2 := "ghijkl";
29 Str3 := Str1 & Str2; -- COR Warning: Length might not be
compatible with 1 .. 6
30 Put(Str3);
31 if Bool_Random then

2-18

Colored Source Code for Ada

32 DName.DISPLAY_NAME (DNAME.NAME_TYPE(STR_CST));
-- COR ERROR: String Length is not correct, must be 4
33 end if;
34 end if ;
35 end MAIN;
36
37 end CORL;
38
39 package DName is
40 type Name_Type is array (1 .. 4) of Character;
41 PROCEDURE DISPLAY_NAME (Str : Name_Type);
42 end DName;
43

Explanation
At lines 21 and 24, PolySpace gives the exact value needed to match the two
arrays. On the other hand, PolySpace prompts the user to investigate the
compatibility of concatenated arrays, by means of an orange check at line 29.

Moreover at line 32, the string length is being put forward even if it depends
on another package.

DIGITS Value Check: COR
Checks the length of DIGITS constructions.

Ada Example

1 package DIGIT is
2 procedure MAIN;
3 end DIGIT;
4
5 package body DIGIT is -- NTC ERROR: COR propagation
6
7 type T is digits 4 range 0.0 .. 100.0;
8 subtype T1 is T
9 digits 1000 range 0.0 .. 100.0; -- COR ERROR: digits value
is too large, highest possible value is 4
10

2-19

2 Check Descriptions

11 procedure MAIN is
12 begin
13 null;
14 end MAIN;
15 end DIGIT;

Explanation
At line 9, PolySpace shows an error on the digits value. It indicates in its
associated message the highest available value, 4 in this case.

DELTA Value Length Check: COR
Checks the length of DELTA constructions.

Ada Example

1
2 package FIXED is
3 procedure MAIN;
4 procedure FAILED(STR : STRING);
5 function Random return Boolean;
6 end FIXED;
7
8 package body FIXED is
9
10 PROCEDURE FIXED_DELTA IS
11
12 GENERIC
13 TYPE FIX IS DELTA <>;
14 PROCEDURE PROC (STR : STRING);
15
16 PROCEDURE PROC (STR : STRING) IS
17 SUBTYPE SFIX IS FIX DELTA 0.1 RANGE -1.0 .. 1.0; -- COR
ERROR: delta is too small, smallest possible value is 0.5E0
18 BEGIN
19 FAILED ("NO EXCEPTION RAISED FOR " & STR);
20 END PROC;
21
22 BEGIN

2-20

Colored Source Code for Ada

23
24 IF RANDOM THEN
25 DECLARE
26 TYPE NFIX IS DELTA 0.5 RANGE -2.0 .. 2.0;
27 PROCEDURE NPROC IS NEW PROC (NFIX);
28 BEGIN
29 NPROC ("INCOMPATIBLE DELTA"); -- NTC ERROR: propagation
of COR Error
30 END;
31 END IF ;
32
33 END FIXED_DELTA;
34
35 procedure MAIN is
36 begin
37 FIXED_DELTA;
38 end MAIN;
39
40 end FIXED;

Explanation
At line 17, PolySpace Server shows an error on the DELTA value. The
message gives the smallest available value, 0.5 in this case.

Static Range and Values Check: COR
Checks if constant values and variable values correspond to their range
definition and construction.

Ada Example

1
2 package SRANGE is
3 procedure Main;
4 function IsNatural return Boolean;
5
6 SUBTYPE INT IS INTEGER RANGE 1 .. 3;
7 TYPE INF_ARRAY IS ARRAY(INT RANGE <>, INT RANGE <>) OF INTEGER;
8 SUBTYPE DINT IS INTEGER RANGE 0 .. 10;

2-21

2 Check Descriptions

9 end SRANGE;
10
11 package body SRANGE is
12
13 TYPE SENSOR IS NEW INTEGER RANGE 0 .. 10;
14
15 TYPE REC2(D : DINT := 1) IS RECORD -- COR Warning: Value might
not be in range
1 .. 3
16 U : INF_ARRAY(1 .. D, D .. 3) := (1 .. D =>
17 (D .. 3 => 1));
18 END RECORD;
19 TYPE REC3(D : DINT := 1) IS RECORD -- COR Error: Value is not
in range 1 .. 3
20 U : INF_ARRAY(1 .. D, D .. 3) := (1 .. D =>
21 (D .. 3 => 1));
22 END RECORD;
23
24 PROCEDURE VALUE_RANGE is
25 VAL : INTEGER;
26 pragma Volatile(VAL);
27 SLICE_A2 : REC2(VAL); -- NIV and COR warning: Value might
not be in range 0 ..
10
28 SLICE_A3 : REC3(4); -- Unreacheable code: because of COR
Error in REC3
29 BEGIN
30 NULL;
31 END VALUE_RANGE;
32
33 PROCEDURE MAIN is
34 Digval : Sensor;
35 begin
36 if IsNatural then
37 declare
38 TYPE Sub_sensor is new Natural range -1 .. 5; -- COR
Error: Static value is not in range of 0 .. 16#7FFF_FFFF#
39 begin
40 null;
41 end;

2-22

Colored Source Code for Ada

42 end if;
43 if IsNatural then
44 declare
45 TYPE NEW_ARRAY IS ARRAY (NATURAL RANGE <>) OF INTEGER;
46 subtype Sub_Sensor is New_Array (Integer RANGE -1 .. 5);
-- COR Error: Static range is not in range 0 .. 16#7FFF_FFFF#
47 begin
48 null;
49 end;
50 end if ;
51 if IsNatural then
52 VALUE_RANGE; -- NTC Error: propagation of the COR error in
VALUE_RANGE
53 else
54 Digval := 11; -- COR Error: Value is not in range of 0 .. 10
55 end if;
56 END Main;
57 end SRANGE;
58
59

Explanation
PolySpace checks the compatibility between range and value. Moreover, it
tells in its associated message the expected length.

Example is shown on the record types REC2 and REC3. PolySpace cannot
determine the exact value of the volatile variable VAL at line 27, because
some paths lead to a safe definition, others to a red one. The results is an
orange warning at line 15.

At lines 19, 38, 46 and 54 PolySpace displays errors on out of range values.

Discriminant Check: COR
Checks the usage of a discriminant in a record declaration.

Ada Example

1

2-23

2 Check Descriptions

2 package DISC is
3 PROCEDURE MAIN;
4
5 TYPE T_Record(A: Integer) is record -- COR Verified: Value is
in range of 1 .. 16#7FFF_FFFF#
6 Sa: String(1..A);
7 END RECORD;
8 end DISC;
9
10 package body DISC is
11
12 PROCEDURE MAIN is
13 begin
14 declare
15 T_STRING6 : T_RECORD(6) := (6, "abcdef"); -- COR Verified:
Discriminant is compatible
16 T_StringOther : T_RECORD(6); -- COR Verified: Discriminant
is compatible
17 T_STRING5 : T_RECORD(5) := (5, "abcde"); -- COR Verified:
Discriminant is compatible
18 begin
19 T_StringOther := T_STRING6; -- COR Verified: Discriminant is
compatible
20 T_string5 := T_Record(T_STRING6); -- COR ERROR: Discriminant
is not compatible
21 end;
22 END Main;
23
24 END DISC;

Explanation
At line 20, PolySpace shows an error while using a discriminant. T_String6
discriminant of length 6 cannot match T_String5 discriminant of length 5.

Component Check: COR
Checks whether each component of a record given is being used accurately.

2-24

Colored Source Code for Ada

Ada Example

1 package COMP is
2
3 PROCEDURE MAIN;
4 SUBTYPE DINT IS INTEGER RANGE 0..1;
5 TYPE COMP_RECORD (D : DINT := 0) is record
6 X : INTEGER;
7 CASE D IS
8 WHEN 0 => ZERO : BOOLEAN;
9 WHEN 1 => UN : INTEGER;
10 END CASE;
11 END RECORD;
12
13 end COMP;
14
15 package body COMP is
16
17 PROCEDURE MAIN is
18 CZERO : COMP_RECORD(0);
19 BEGIN
20 CZERO.X := 0;
21 CZERO.ZERO := FALSE; -- COR Verified: zero is a component
of the variable
22 CZERO.UN := CZERO.X; -- COR ERROR: un is not a component of
the variable
23 END MAIN;
24 END COMP;
25

Explanation
At line 22, PolySpace Server shows an error. According to the declaration of
CZERO (line 18), UN is not a valid field record component of the variable.

Dimension Versus Definition Check: COR
Checks the compatibility of array dimension in relation to their definition.

2-25

2 Check Descriptions

Ada Example

1 package DIMDEF is
2 PROCEDURE MAIN;
3 FUNCTION Random RETURN boolean;
4 end DIMDEF;
5
6 package body DIMDEF is
7
8 SUBTYPE ST IS INTEGER RANGE 4 .. 8;
9 TYPE BASE IS ARRAY(ST RANGE <>, ST RANGE <>) OF INTEGER;
10 SUBTYPE TBASE IS BASE(5 .. 7, 5 .. 7);
11
12 FUNCTION IDENT_INT(VAL : INTEGER) RETURN INTEGER IS
13 BEGIN
14 RETURN VAL;
15 END IDENT_INT;
16
17 PROCEDURE MAIN IS
18 NEWARRAY : TBASE;
19 BEGIN
20 IF RANDOM THEN
21 NEWARRAY := (7 .. IDENT_INT(9) => (5 .. 7 => 4)); --
COR Error: Dimension is not compatible with definition
22 END IF;
23 IF Random THEN
24 NEWARRAY := (5 .. 7 => (IDENT_INT(3) .. 5 => 5)); --
COR Error: Dimension is not compatible with definition
25 END IF;
26 END MAIN;
27
28 END DIMDEF;

Explanation
At lines 21 and 24, PolySpace Server indicates the incorrect dimension of the
double array Newarray of type TBASE.

2-26

Colored Source Code for Ada

Aggregate Versus Definition Check: COR
Checks the correctness condition on aggregate declaration in relation to
their definition.

Ada Example

1
2 package AGGDEF is
3 PROCEDURE MAIN;
4 PROCEDURE COMMENT (A: STRING);
5 function RANDOM return BOOLEAN;
6 end AGGDEF;
7
8 package body AGGDEF is
9
10 TYPE REC1 (DISC : INTEGER := 5) IS RECORD
11 NULL;
12 END RECORD;
13
14 TYPE REC2 (DISC : INTEGER) IS RECORD
15 NULL;
16 END RECORD;
17
18 TYPE REC3 is RECORD
19 COMP1 : REC1(6);
20 COMP2 : REC2(6);
21 END RECORD;
22
23 FUNCTION IDENT_INT(VAL : INTEGER) RETURN INTEGER IS
24 BEGIN
25 RETURN VAL;
26 END IDENT_INT;
27
28 PROCEDURE AGGDEF_INIT is -- AGGREGATE INITIALISATION
29 OBJ3 : REC3;
30 BEGIN
31 if random then
32 OBJ3 :=
33 ((DISC => IDENT_INT(7)), (DISC => IDENT_INT(7))); --

2-27

2 Check Descriptions

COR ERROR: Aggregate is not compatible with definition
34 end if;
35 IF OBJ3 = ((DISC => 7), (DISC => 7)) then -- COR ERROR:
Aggregate is not compatible with definition
36 COMMENT ("PREVENTING DEAD VARIABLE OPTIMIZATION");
37 END IF;
38 END AGGDEF_INIT;
39
40 PROCEDURE MAIN IS
41 BEGIN
42 AGGDEF_INIT; -- NTC ERROR: propagation of COR ERROR
43 END MAIN;
44 end AGGDEF;

Explanation
At lines 33 and 35, PolySpace indicates the incompatible aggregate
declaration on OBJ3. The aggregate definition with a discriminant of value 6,
is not compatible with a discriminant of value 7.

Aggregate Array Length Check: COR
Checks the length for array aggregate.

Ada Example

1 package AGGLEN is
2 PROCEDURE MAIN;
3 PROCEDURE COMMENT(A: STRING);
4 end AGGLEN;
5
6 package body AGGLEN is
7
8 SUBTYPE SLENGTH IS INTEGER RANGE 1..5;
9 TYPE SL_ARR IS ARRAY (SLENGTH RANGE <>) OF INTEGER;
10
11 F1_CONS : INTEGER := 2;
12 FUNCTION FUNC1 RETURN INTEGER IS
13 BEGIN
14 F1_CONS := F1_CONS - 1;

2-28

Colored Source Code for Ada

15 RETURN F1_CONS;
16 END FUNC1;
17
18
19 TYPE CONSR (DISC : INTEGER := 1) IS
20 RECORD
21 FIELD1 : SL_ARR (FUNC1 .. DISC); -- FUNC1 EVALUATED.
22 END RECORD;
23
24 PROCEDURE MAIN IS
25
26 BEGIN
27 DECLARE
28 TYPE ACC_CONSR IS ACCESS CONSR;
29 X : ACC_CONSR;
30 BEGIN
31 X := NEW CONSR;
32 BEGIN
33 IF X.ALL /= (3, (5 => 1)) THEN -- COR ERROR: Illegal
Length for array aggregate
34 COMMENT ("IRRELEVANT");
35 END IF;
36 END;
37 END;
38 END MAIN;
39
40 END AGGLEN;

Explanation
At line 33, PolySpace shows an error. The static aggregate length is not
compatible with the definition of the component FIELD1 at line 21.

Sub-Aggregates Dimension Check: COR
Checks the dimension of sub-aggregates.

Ada Example

1

2-29

2 Check Descriptions

2 package SUBDIM is
3 PROCEDURE MAIN;
4 FUNCTION EQUAL (A : Integer; B : Integer) return Boolean;
5 end SUBDIM;
6
7 package body SUBDIM is
8
9
10 TYPE DOUBLE_TABLE IS ARRAY(INTEGER RANGE <>, INTEGER
RANGE <>) OF INTEGER;
11 TYPE CHOICE_INDEX IS (H, I);
12 TYPE CHOICE_CNTR IS ARRAY(CHOICE_INDEX) OF INTEGER;
13
14 CNTR : CHOICE_CNTR := (CHOICE_INDEX => 0);
15
16 FUNCTION CALC (A : CHOICE_INDEX; B : INTEGER)
17 RETURN INTEGER IS
18 BEGIN
19 CNTR(A) := CNTR(A) + 1;
20 RETURN B;
21 END CALC;
22
23 PROCEDURE MAIN IS
24 A1 : DOUBLE_TABLE(1 .. 3, 2 .. 5);
25 BEGIN
26 CNTR := (CHOICE_INDEX => 1);
27 if (EQUAL(CNTR(H),CNTR(I))) then
28 A1 := (-- COR ERROR: Sub-agreggates do not
have the same dimension
29 1 => (CALC(H,2) .. CALC(I,5) => -4),
30 2 => (CALC(H,3) .. CALC(I,6) => -5),
31 3 => (CALC(H,2) .. CALC(I,5) => -3));
32 END IF;
33 END MAIN;
34
35 end SUBDIM;

2-30

Colored Source Code for Ada

Explanation
At line 28, PolySpace shows an error. One of the sub-aggregates declarations
of A1 is not compatible with its definition. The second sub-aggregates does
not respect the dimension defined at line 24.

Sub-aggregates must be singular.

Characters Check: COR
Checks the construction using the character type.

Ada Example

1
2 package CHAR is
3 procedure Main;
4 function Random return Boolean;
5 end CHAR;
6
7
8 package body CHAR is
9
10 type ALL_Char is array (Integer) of Character;
11 TYPE Sub_Character is new Character range 'A' .. 'E';
12 TYPE TabC is array (1 .. 5) of Sub_Character;
13
14 FUNCTION INIT return character is
15 VAR : TabC := "abcdf"; -- COR Error: Character is not in
range 'A' .. 'E'
16 begin
17 return 'A';
18 end;
19
20 procedure MAIN is
21 Var : ALL_Char;
22 BEGIN
23 IF RANDOM THEN
24 Var(1) := Init; -- NTC ERROR: propagation of the COR error
25 ELSE

2-31

2 Check Descriptions

26 Var(Integer) := ""; -- COR ERROR: the 'null' string literal
is not allowed here
27 END IF;
28 END MAIN;
29 END CHAR;

Explanation
At line 15, PolySpace indicates that the assigned array is not within the range
of the Sub_Character type. Moreover, any of the character values of VAR does
not match any value in the range ’A’ ..’E’.

At line 26, a particular detection is made by PolySpace when the null string
literal is assigned incorrectly.

Accessibility Level on Access Type: COR
Checks the accessibility level on an access type. This check is defined in Ada
Standard at chapter 3.10.2-29a1. It detects errors when an access pointer
refers to a bad reference.

Ada Example

1
2 package CORACCESS is
3 procedure main;
4 function Brand return Boolean;
5 end CORACCESS;
6
7 package body CORACCESS is
8 procedure main is
9
10 type T is new Integer;
11 type A is access all T;
12 Ref : A;
13
14 procedure Proc1(Ptr : access T) is
15 begin
16 Ref := A(Ptr); -- COR Verified: Accessibility level deeper
than that of access type

2-32

Colored Source Code for Ada

17 end;
18
19 procedure Proc2(Ptr : access T) is
20 begin
21 Ref := A(Ptr); -- COR ERROR: Accessibility level not deeper
than that of access type
22 end;
23
24 procedure Proc3(Ptr : access T) is
25 begin
26 Ref := A(Ptr); -- COR Warning: Accessibility level might
be deeper than that of access type
27 end;
28
29 X : aliased T := 1;
30 begin
31 declare
32 Y : aliased T := 2;
33 begin
34 Proc1(X'Access);
35 if BRand then
36 Proc2(Y'Access); -- NTC ERROR: propagation of error
at line 22
37 elsif BRand then
38 Proc3(Y'Access); -- NTC ERROR: propagation of error
at line 27
39 end if;
40 end;
41 Proc3(X'Access);
42 end main;
43 end CORACCESS;
44

Explanation
In the example above at line 16: Ref is set to x’access and Ref is defined in
same block or in a deeper one. This is authorized.

On the other hand, y is not defined in a block deeper or inside the one in
which Ref is defined. So, at the end of block, y does not exist any more and

2-33

2 Check Descriptions

Ref is supposed to points to on y. It is prohibited and PolySpace checks at
lines 21 and 26.

Note The warning at line 26 is due to the combination of a red check because
of y’access at line 38 and a green one for x’access at line 41.

Explicit Dereference of a Null Pointer: COR
When a pointer is dereferenced, PolySpace checks whether or not it is a null
pointer.

Ada Example

1 package CORNULL is
2 procedure main;
3 end CORNULL;
4
5 package body CORNULL is
6 type ptr_type is access all integer;
7 ptr : ptr_type;
8 A : aliased integer := 10;
9
10 procedure main is
11 begin
12 ptr := A'access;
13 if (ptr /= null) then
14 ptr.all := ptr.all + 1; -- COR Warning: Explicit
dereference of possibly null value
15 pragma assert (ptr.all = 10); -- COR Warning: Explicit
dereference of possibly null value
16 null;
17 end if;
18 end main;
19 end CORNULL;
20

2-34

Colored Source Code for Ada

Explanation
At line 14 and line 15, PolySpace checks the null value of ptr pointer. As
PolySpace does not perform pointer verification, it is not able to be precise on
such a construction.

These checks are currently always orange.

Accessibility of a Tagged Type: COR
Checks if a tag belongs to a tagged type hierarchy. This check is defined in
Ada Standard at chapter 4.6 (paragraph 42).

It detects errors when a Tag of an operand does not refer to class-wide
inheritance hierarchy.

Ada Example

1 package TAG is
2
3 type Tag_Type is tagged record
4 C1 : Natural;
5 end record;
6
7 type DTag_Type is new Tag_Type with record
8 C2 : Float;
9 end record;
10
11 type DDTag_Type is new DTag_Type with record
12 C3 : Boolean;
13 end record;
14
15 procedure Main;
16
17 end TAG;
18
19
20 package body TAG is
21
22 procedure Main is

2-35

2 Check Descriptions

23 Y : DTag_Type := DTag_Type'(C1 => 1, C2 => 1.1);
24 Z : DTag_Type := DTag_Type'(C1 => 2, C2 => 2.2);
25
26 W : Tag_Type'Class := Z; -- W can represent any object
27 -- in the hierarchy rooted at Tag_Type
28 begin
29 Y := DTag_Type(W); -- COR Warning: Tag might be correct
30 null;
31 end Main;
32
33 end TAG;

Explanation
In the previous example W represents any object in the hierarchy rooted
at Tag_Type.

At line 29, a check is made that the tag of W is either a tag of DTag_Type or
DDTag_Type. In this example, the check should be green, W belongs to the
hierarchy.

PolySpace is not precise on tagged types and currently always flags each one
with a COR warning.

Power Arithmetic: POW
Check to establish whether the standard power integer or float function is
used with an acceptable (positive) argument.

Ada Example

1 With Ada.Numerics; Use Ada.Numerics;
2 With Ada.Numerics.Aux; Use Ada.Numerics.Aux;
3
4 package POWF is
5 function Bool_Random return Boolean;
6 procedure MAIN;
7 end POWF;
8
9 package body POWF is

2-36

Colored Source Code for Ada

10
11 procedure MAIN is
12 IRes, ILeft, IRight : Integer;
13 Res, Dbl_Random : Double ;
14 pragma Volatile(Dbl_Random);
15 begin
16 -- Implementation of Power arithmetic function with **
17 if (Bool_Random) then
18 ILeft := 0;
19 IRight := -1;
20 IRes:= ILeft ** IRight; -- POW ERROR: Power must be positive
21 end if;
22 if (Bool_Random) then
23 ILeft := -2;
24 IRight := -1;
25 IRes:= ILeft ** IRight; -- POW ERROR: Power must be positive
26 end if;
27
28 ILeft := 2e8;
29 IRight := 2;
30 IRes:= ILeft ** IRight; -- otherwise OVFL Warning
31
32 -- Implementation with double
33 Res := Pow (dbl_Random, dbl_Random); -- POW Warning :
may be not positive
34 end MAIN;
35 end POWF;

Explanation
An error occurs on the power function on integer values "**" with respect
to the values of the left and right parameters when left <= 0 and right < 0.
Otherwise, PolySpace prompts the user to investigate further by means of
an orange check.

Note As recognized by the Standard, PolySpace places a green check on the
instruction left**right with left:=right:=0.

2-37

2 Check Descriptions

User Assertion: ASRT
Check to establish whether a user assertion is valid. If the assumptions
implied by an assertion are invalid, then the standard behavior of the
pragma assert is to abort the program. PolySpace therefore considers a failed
assertion to be a runtime error.

Ada Example

1
2 package ASRT is
3 function Bool_Random return Boolean;
4 procedure MAIN;
5 end ASRT;
6
7 package body ASRT is
8
9 subtype Intpos is Integer range 0..Integer'Last;
10 subtype TenInt is Integer range 1..10;
11
12 Val_Constant : constant Boolean := True;
13 procedure MAIN is
14 -- Init variables
15 Flip_Flop, Flip_Or_val : Boolean;
16 Ten_Random, Ten_Positive : TenInt;
17 pragma Volatile_ada.htm (ten_random);
18 begin
19
20 if (Bool_Random) then
21 -- Flip_Flop is randomly be True or False
22 Flip_Flop := bool_random;
23
24 -- Flip_Or_Val is always True
25 Flip_Or_Val := Flip_Flop or Val_Constant;
26 pragma assert(flip_flop=True or flip_flop=False); --
User assertion is verified
27 pragma assert(Flip_Or_Val=False); -- ASRT ERROR: User
assertion fails
28 end if;
29 if (Bool_Random) then

2-38

Colored Source Code for Ada

30 ten_positive := Ten_random;
31 pragma assert(ten_positive > 5); -- ASRT Warning: User
assertion may fail
32 pragma assert(ten_positive > 5); -- User assertion
is verified
33 pragma assert(ten_Positive <= 5); -- ASRT ERROR:
Failure User Assert
34 end if;
35
36 end MAIN;
37
38 end ASRT; -- End Package

Explanation
In the ASRT.ASRT function, pragma assert is used in two different manners:

• To establish whether the values flip_flop and var_flip in the program are
inside the domain which that the program is designed to handle. If the
values were outside the range implied by the assert, then the program
wouldn’t be able to run properly. Thus they are flagged as runtime errors.

• To redefine the range of variables as shown at line 32 where
ASRT.Ten_positive is restrained to only a few values. PolySpace makes the
assumption that if the program is executed with no runtime error at line
32, Ten_positive can only have a value greater than 5 after the line.

Non Terminations: Calls and Loops
NTC and NTL are only informative red checks.

• They are the only red errors which can be filtered out using the filters
shown below

• They don’t stop the verification

• As other reds, code placed after them are gray (unreachable): the only color
they can take is red. They are not “orange” NTL or NTC

• They can reveal a bug, or can simply just be informative

2-39

2 Check Descriptions

Check Description

NTL A NTL is a loop for which the break condition is never met. Among
NTLs, you will find the following examples:

• while(1=1)loop function_call; end loop; // informative NTL

• while(x >=0) loop x := x+1; end loop; // with x as an unsigned int
could reveal a bug, or not (an unsigned is always positive)

• for I in 0 .. 10 loop my_array(i) = 10; end loop; // with "my_array
is integer in 0..9" this red NTL reveals a bug in the array access,
flagged in orange

NTC Your function called "test" calls f;. And “f;” is flagged as a red NTC.
Why? There could be five distinct explanations for this NTC:

• “f” contains a red error;

• “f” contains an NTL ;

• “f” contains an NTC;

• “f” contains an orange which is context dependant : it is either
red or green: for this call, it makes the function crash.

Note Some information can be given when clicking on the NTC

The list of so-called "non satisfiable constraints" represents the list of
variables that cause the red error inside the function. The (potentially) long
list of variables is useful to understand the cause of the red NTC, as it gives
the conditions causing the NTC: it can be a list of variables (global or not):

• with a given value;

• which are not initialized. Perhaps the variables are initialized outside
the set of verified files.

Solution
Carefully check the reasons with relation to your situation.

2-40

Colored Source Code for Ada

Note If you can identify a function that does not terminate (loop, exit
procedure) you may wish to use the -known-NTC function. You will find all
the NTCs and their consequences in the known-NTC Viewer, allowing you to
filter them. Benefit: you can focus on NTCs you did not expect.

Non Termination of Call: NTC
Check to establish whether a procedure call returns. It is not the case when
the procedure contains an endless loop or a certain error, or if the procedure
calls another procedure which does not terminate. In the latter instance, the
status of this check is propagated to the caller.

Ada Example.

1 package NTC is
2 procedure MAIN;
3 -- Stubbed function
4 function Random_Boolean return Boolean;
5 end NTC;
6
7 package body NTC is
8
9 procedure FOO (X : Integer) is
10 Y : Integer;
11 begin
12 Y := 1 / X; -- ZDV Warning: Scalar division by zero may occur
13 while (X >= 0) loop -- NTL ERROR: Loop never terminate
14 if (Y /= X) then
15 Y := 1 / (Y-X);
16 end if;
17 end loop;
18 end FOO;
19
20 procedure MAIN is
21 begin
22 if (Random_Boolean) then
23 FOO(0); -- NTC ERROR: Division by zero in NTC.FOO (ZDV)
24 end if ;

2-41

2 Check Descriptions

25 if (Random_Boolean) then
26 FOO(2); -- NTC ERROR: Non Termination Loop in NTC.FOO (NTL)
27 end if;
28 end MAIN;
29 end NTC;

Explanation. In this example, the function NTC.FOO is called twice and
neither of these 2 calls ever terminates:

• The first never returns because of a division by zero (ZDV warning) at
line 12 when X = 0.

• The second never terminates because of an infinite loop (red NTL) at line 13.

Note An NTC check can only be red.

Non Termination of Call Due to Entry in Tasks
Tasks or entry points are called by PolySpace at the end of the main
subprogram (which is executed sequentially) at the same time (the main
subprogram must terminate).

In Ada language, explicit task constructs which are automatically detected
by PolySpace are also called at the end of the main subprogram. An Ada
program whose main subprogram calls a task entry, for instance, violates this
model. PolySpace signals violations of this hypothesis, by indicating an NTC
on an entry call performed in the main.

In the PolySpace model, the main procedure is executed first before any
other task is started.

Example.

1 package NTC_entry is
2
3 TASK TYPE MyTask IS
4 ENTRY START;
5 ENTRY V842;
6 END MyTask;

2-42

Colored Source Code for Ada

7 procedure Main;
8 A : Integer;
9 end NTC_entry;
10
11 package body NTC_entry is
12
13 task body MyTask is
14 begin
15 accept Start;
16 A := A + 1; -- Gray code
17 accept V842;
18 A := A - 1; -- Gray code
19 accept V842;
20 A := A + 1; -- Gray code
21 accept V842;
22 A := A - 1; -- Gray code
23 end MyTask;
24
25 procedure Main is
26 T1 : MyTask;
27 begin
28 A := 0;
29 T1.Start; -- NTC ERROR: entry task in the main
30 T1.V842;
31 T1.V842;
32 T1.V842;
33 pragma Assert(A=0); -- Gray code
34 end Main;
35 end NTC_entry;

Using the launching command polyspace-ada95 -main NTC_entry.main
on the previous example leads to a red NTC in the main procedure and gray
code on the main task body MyTask.

The only way to verify this code with PolySpace is to add another main
procedure with a null body and to consider the NTC_entry.main as a task.

Package mymain is Procedure null_main; End mymain;

2-43

2 Check Descriptions

The previous small piece of code added and the usage of the launching
command polyspace-ada95 -main mymain.null_main.-entry-points
NTC_entry.main allow removing the red NTC in NTC_entry.main and gray
code in the body of MyTask.

Another example concerns the call of an accept “rendez-vous” in the task body
from the main (using -main main.main):

main main.main):
--package body main is
procedure main is
begin
depend.controleur.demarrer; -- red NTC because of the call

to a task is called by the main
end main;

--end main;
with Text_Io;
package body depend is
task body controleur is
date : Integer := 0;
init_date: Integer;
begin
loop
select
accept demarrer;
if (date = 0) then
init_date := 10;
end if ;
date := init_date ;

Text_Io.Put_Line ("bonjour");
exit;
end select;
end loop;
end;

end depend;

2-44

Colored Source Code for Ada

Known Non Termination of Call: k-NTC
By using the -known-NTC option with a specified function at launch time, it
is possible to transform an NTC Check for a non termination of call to a k-NTC
check. Like an NTC check, k-NTC checks are propagated to their callers.

Functions which are designed to be non-terminating can be filtered out during
the analysis of results through the use of the appropriate filter in the viewer,
in conjunction with the -known-NTC option at launch.

Ada Example.

1 package KNTC is
2 procedure Put_io (X : Integer);
3 procedure get_data(Data : out Float; Status : out Integer);
4 procedure store_data(Data : in Float);
5 procedure SysHalt(Value : Integer);
6 procedure MAIN;
7 end KNTC;
8
9 package body KNTC is
10
11 -- known NTC function
12 procedure SysHalt(Value : Integer) is
13 begin
14 Put_io(Value);
15 loop -- Never terminate loop
16 null;
17 end loop;
18 end SysHalt;
19
20 procedure MAIN is
21 Status : Integer := 1;
22 Data : Float;
23 begin
24
25 while(Status = 1) loop
26 -- get data
27 get_data(Data, Status);
28 if (status = 1) then
29 store_data(data);

2-45

2 Check Descriptions

30 end if;
31 if (Status = 0) then
32 SysHalt(1); -- k-NTC check: Call never terminate
33 end if;
34 end loop;
35 end MAIN;
36 end KNTC;

Explanation. In the above example, the -known-NTC "KNTC.SysHalt"
option has been added at launch time, transforming corresponding NTC
checks to k-NTC one.

Non Termination of Loop: NTL
Check to establish whether a loop (for,do-while, while) terminates.

Ada Example.

1
2 package NTL is
3 procedure MAIN;
4 -- Prototypes stubbed as pure functions
5 procedure Send_Data (Data : in Float);
6 procedure Update_Alpha (A : in Float);
7 end NTL;
8
9 package body NTL is
10
11 procedure MAIN is
12 Acq, Vacq : Float;
13 pragma Volatile_ada.htm (Vacq);
14 -- Init variables
15 Alpha : Float := 0.85;
16 Filtered : Float := 0.0;
17 begin
18 loop -- NTL information: Loop never terminates
19 -- Acquisition
20 Acq := Vacq;
21 -- Treatment
22 Filtered := Alpha * Acq + (1.0 - Alpha) * Filtered;

2-46

Colored Source Code for Ada

23 -- Action
24 Send_Data(Filtered);
25 Update_Alpha(Alpha);
26 end loop;
27 end MAIN;
28 end NTL;
29

Explanation. In the above example, the "continuation condition" of the while
is always true and the loop will never exit. Thus PolySpace will raise an error.

In some case, the condition is not trivial and may depend on some program
variables. Nevertheless, PolySpace is still able to treat those cases.

Another NTL Example: Error Propagation. As with all other red errors,
PolySpace does not continue with the verification in the current branch even
with the -continue-with-red-error option. Due to the inside error, the (for,
do-while, while) loop never terminates.

1 package NTLDO is
2 procedure MAIN;
3 end NTLDO;
4
5 package body NTLDO is
6 procedure MAIN is
7 A : array(1..20) of Float;
8 J : Integer;
9 begin
10 for I in A'First .. 21 loop -- NTL ERROR: propagation of
OVFL ERROR
11 A(I) := 0.0 ; -- OVFL Warning: 20 verification with
I in [1,20] and one ERROR with I = 21
12 J := I + 1;
13 end loop;
14 end MAIN;
15 end NTLDO;

Note A NTL check can only be red.

2-47

2 Check Descriptions

Sqrt, Sin, Cos, and Generic Elementary Functions
When the verified code uses some mathematical functions which are not
supported by PolySpace, there are always unproven checks about overflows
when two variables which have been derived from the results of mathematical
functions such as “cos” are summed. VOA checks display the full range for the
potential return value of these functions.

This symptom can be seen when all mathematical functions are stubbed
automatically which happens when the declarations of these functions for the
compiler in use are slightly different from those assumed by PolySpace. The
following solution matches the user’s mathematical functions to PolySpace
Server’s equivalent function. Please note it has no impact on the original
source code (no modification will be made).

Original Code.

package Types is
subtype My_Float is Float range -100.0 .. 100.0;

end Types;

3 package Main is
4 procedure Main;
5 end Main;
6
7
8 with New_Math; use New_Math;
9 with Types; use Types;
10
11 package body Main is
12 procedure Main is
13 X : My_float;
14 begin
15 X := Cos(12.3); --voa displays [-1.0 .. 1.0]
16 X := Sin(12.3); --voa displays [-1.0 .. 1.0]
17 X ::= Sqrt(-1.5); --is red: NTC Error
18 end;
19 end Main;

2-48

Colored Source Code for Ada

Original Maths Package.

with My_Specific_Math_Lib;
with Types; use Types;

package New_Math is
function COS (X : My_Float) return My_Float renames \

My_specific_math_lib.
Cos;
function SQRT (X : My_Float) return My_Float renames \

My_specific_math_lib.
sqrt;
function SIN (X : My_Float) return My_Float renames \

My_specific_math_lib.
sin;
end New_Math;

Extra Package. This package may be written by the user to include more
precise modelling of the mathematical functions in the verification.

WITH Ada.Numerics.Generic_Elementary_Functions;
with Types; use Types;

package My_specific_math_lib is new Ada.Numerics.
Generic_Elementary_Functions(My_Float);

Important. Due to a lack of precision in some areas, PolySpace is not always
able to indicate a red NTC check on mathematical functions even whereas
a problem exists. By default it is important to consider each call to any
mathematical functions as though it had been highlighted by an unproven
check, and could therefore lead to a runtime error.

Unreachable Code: UNR
Check to establish whether different code snippets (assignments, returns,
conditional branches and function calls) are reached (Unreachable code is
referred to as "dead code"). Dead code is represented by means of a gray color
on every check and an UNR check entry.

2-49

2 Check Descriptions

Ada Example

1 package UNR is
2 type T_STATE is (Init, Wait, Intermediate, EndState);
3 function STATE (State : in T_STATE) return Boolean;
4 function Intermediate_State(I : in Integer) return T_STATE;
5 function UNR_I return Integer;
6 procedure MAIN;
7 end UNR;
8
9 package body UNR is
10
11 function STATE (State : IN T_STATE) return Boolean is
12 begin
13 if State = Init then
14 return False;
15 end if ;
16 return True;
17 end STATE;
18
19 function UNR_I return Integer is
20 Res_End, Bool_Random : Boolean;
21 I : Integer;
22 Res_State : T_STATE;
23 pragma Volatile_ada.htm (bool_random);
24 begin
25 Res_End := STATE(Init);
26 if (Res_End = False) then
27 Res_End := State(EndState);
28 Res_State ::= Intermediate_State(0);
29 if (Res_End = True or else Res_State = Wait) then -- UNR code
30 Res_State := EndState;
31 end if;
32 -- Use of I which is not initialized
33 if (Bool_Random) then
34 Res_State := Intermediate_State(I); -- NIV ERROR
35 if (Res_State = Intermediate) then -- UNR code because
of NIV error
36 Res_State := EndState;
37 end if;

2-50

Colored Source Code for Ada

38 end if;
39 else
40 -- UNR code
41 I := 1;
42 Res_State := Intermediate_State(I);
43 end if;
44 return I; -- NIV ERROR: because of UNR code
45 end UNR_I;
46
47 procedure MAIN is
48 I : Integer;
49 begin
50 I := UNR_I; -- NTC ERROR because of propagation
51 end MAIN;
52
53 end UNR;
54
55
56

Explanation
The example illustrates three possible reasons why code might be
unreachable, and hence be colored gray.

• As shown at line 26, the first branch is always true (if-then part) and so the
other branch is never executed (else part at lines 40 to 42).

• At line 29 a conditional part of a conditional branch is always true and the
other part never evaluated because of the standard definition of logical
operator or else.

• The piece of code after a red error is never evaluated by PolySpace Server.
The call to the function and the lines following line 34 are considered to
be dead code. Correcting the red error and relaunching would allow the
color to be revised.

Value on Assignment: VOA
Check to establish the value taken by a variable on assignment.

2-51

2 Check Descriptions

VOA checks are only available on scalar variables. Some examples are given
below.

Note PolySpace software does not show VOA on all assignments. To optimize
performance, the software may not show VOA in some cases.

Ada Example

1
2
3 Package VOA is
4
5 subtype T_NBWAY is Integer range 1..8;
6 subtype T_DIGITAL is Integer range 0..1;
7 subtype T_ANALOGIC is Float range -10.0 .. 10.0;
8 Zero_analogic : constant T_ANALOGIC
9 := (T_ANALOGIC'Last - T_ANALOGIC'First)/ 2.0 - T_ANALOGIC'Last; --
10
11 function Get_Analogic (Way : T_NBWAY) return T_Analogic;
12 function Get_Digit (Way : T_NBWAY) return T_Digital;
13
14 type VerifierColor is (Red, Green, Orange, Black);
15 type RECOR is
16 record
17 A : Float;
18 B : VerifierColor;
19 end record;
20 Var_rec : RECOR;
21
22 Procedure MAIN;
23
24 end VOA;
25
26 package body VOA is
27
28 Procedure MAIN is
29 Way_io : T_NBWAY := T_NBWAY'First;
30 Val_Sensor : T_ANALOGIC;

2-52

Colored Source Code for Ada

31 Val_Digit : T_DIGITAL;
32 volatile_Color : VerifierColor;
33 pragma Volatile(Volatile_color);
34 Volatile_Float : Float;
35 pragma Volatile(Volatile_Float);
36 begin
37
38 for I in T_NBWAY'Range loop
39 Val_Sensor := Get_Analogic(I); -- VOA: {-1E+1<=[expr]<=1E+1}
40 Val_Digit := Get_Digit(I); -- VOA: {0<=[expr]<=1}
41 if Val_Sensor < 0.0 then
42 Val_Sensor := Zero_Analogic; -- VOA: {[expr]=0.0}
43 end if;
44 end loop;
45
46 -- Example
47 Var_Rec.A := Volatile_Float; -- VOA: {[expr]=float(32)
range -3.41E+38..3.4E+38}
48 Var_Rec.B := Volatile_color; -- VOA: {red<=[expr]<=black}
49
50 -- Other possible but intrusive way to know a specific value
51 pragma Inspection_Point (Way_io); -- inspection point computed
range: {WAY_IO=1}
52
53 end MAIN;
54
55 End VOA;

Explanation
As shown in the example, inspection points (IPT) can also be used to discover
the range of a variable.

Inspection Points: IPT
The use of pragma Inspection_Point (var) as a code snippet (where (var) is
a scalar variable) represents a request to compute the specific range of a
variable by means of a pragma instruction. Refer to the example below.

2-53

2 Check Descriptions

Ada Example

1
2
3 Package IPT is
4
5 subtype T_NBWAY is Integer range 1..8;
6 subtype T_DIGITAL is Integer range 0..1;
7 subtype T_ANALOGIC is Float range -10.0 .. 10.0;
8 Zero_analogic : constant T_ANALOGIC
9 := (T_ANALOGIC'Last - T_ANALOGIC'First)/ 2.0 - T_ANALOGIC'Last; --
10
11 function Get_Analogic (Way : T_NBWAY) return T_Analogic;
12 function Get_Digit (Way : T_NBWAY) return T_Digital;
13
14 type VerifierColor is (Red, Green, Orange, Black);
15 type RECOR is
16 record
17 A : Float;
18 B : VerifierColor;
19 end record;
20 Var_rec : RECOR;
21
22 Procedure MAIN;
23
24 end IPT;
25
26 package body IPT is
27
28 Procedure MAIN is
29 Way_io : T_NBWAY := T_NBWAY'First;
30 Val_Sensor : T_ANALOGIC;
31 Val_Digit : T_DIGITAL;
32 volatile_Color : VerifierColor;
33 pragma Volatile(Volatile_color);
34 Volatile_Float : Float;
35 pragma Volatile(Volatile_Float);
36 begin
37
38 for I in T_NBWAY'Range loop

2-54

Colored Source Code for Ada

39 Val_Sensor := Get_Analogic(I);
40 pragma Inspection_Point (Val_Sensor); --
IPT: {-1E+1<=VAL_SENSOR<=1E+1}
41 Val_Digit := Get_Digit(I);
42 pragma Inspection_Point (Val_Digit); --
IPT: {0<=VAL_DIGIT<=1}
43 end loop;
44
45 -- Example on record
46 Var_Rec.A := Volatile_Float;
47 Var_Rec.B := Volatile_color;
48 pragma Inspection_Point (Var_Rec); -- IPT currently ignored
49 pragma Inspection_Point (Volatile_color); --
IPT: {VOLATILE_COLOR=red..
black}
50 pragma Inspection_Point (Way_io); -- IPT: {WAY_IO=1}
51
52 end MAIN;
53
54 End IPT;

Explanation
Note that the inspection point at line 48 is ignored. Inspection points are
available for scalar variables only.

2-55

2 Check Descriptions

2-56

3

Approximations Used
During Verification

3 Approximations Used During Verification

Why PolySpace Verification Uses Approximations

In this section...

“What is Static Verification” on page 3-2
“Exhaustiveness” on page 3-3

What is Static Verification
PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program without
actually executing it. This differs significantly from other techniques, such
as runtime debugging, in that the verification it provides is not based on a
given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required

3-2

Why PolySpace® Verification Uses Approximations

to establish that – and hence the gain in efficiency compared to traditional
approaches.

Static code verification does have an exact solution, but that solution is
generally not practical, as it would generally require the enumeration of all
possible test cases. As a result, approximation is required.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no runtime error (RTE) item
to be checked can be missed by PolySpace.

3-3

3 Approximations Used During Verification

3-4

4

Examples

4 Examples

Complete Examples

In this section...

“Simple Ada Example” on page 4-2
“HDCA Server Example” on page 4-2
“airplane2 Example” on page 4-3
“High Speed Train Example” on page 4-3

Simple Ada Example
polyspace-ada \
-main a_project.root_procedure \
-prog myProject \
-O1 \
-sources directory/*.ad[bs] \
-modules-precision sri:O2,types:O0

HDCA Server Example
An Ada example. Note that we try to minimize verification time in going to
pass2 and O0. Note also the list of files (no spaces in that file list!).

polyspace-ada \
-prog HDCA_Server \
-main hdca_main.HDCA_Server \
-O0 \
-from scratch -to pass2 \
-keep-all-files \
-no-automatic-stubbing \
-continue-with-red-error \
-results-dir RESULTS \
-sources \

$working_version/hdca/clock_and_date.ada,\
$working_version/hdca/cpu_usage.ada,\
$working_version/hdca/exception_log.ada,\
$working_version/hdca/hdca_main.ada,\
$working_version/screen/monitor.ada,\
$working_version/common/utilities/letter_box.ada,\

4-2

Complete Examples

$working_version/common/utilities/library_functions.ada,\
$working_version/common/utilities/catalog_tools.ada,\
$working_version/common/utilities/configuration.ada,\
$working_version/common/utilities/converting.ads\
$working_version/common/utilities/converting.adb

airplane2 Example
An Ada Example with Tasks

polyspace-ada \
-target m68k \
-entry-points Wings.wingSuperVisor,Tail.tailSuperVisor,\

Rudder.rudderSuperVisor \
-to pass2 \
-from scratch \
-prog airplane2 \
-O0 \
-results-dir `pwd`/RESULTS_14_08 \
-main main.pst_main

High Speed Train Example
An Ada example.

polyspace-ada \
-target sparc \
-from scratch \
-array-expansion-size 1 \
-sources "sources/*.[aA]*[a-zA-Z]" \
-prog high_speed_train \
-O0 \
-keep-all-files \
-results-dir RESULTS \
-main root_package.start

4-3

	toc
	Options Description
	General Options
	Overview
	-prog program-name
	-date date
	-author author-name
	-verif-version verif-version
	-voa (Deprecated)
	-keep-all-files
	-continue-with-red-error (Deprecated)
	-continue-with-existing-host
	-allow-unsupported-linux
	-sources "files" or -sources-list-file file_name
	-extensions-for-spec-files and -ada-include-dir
	-results-dir directory
	-pre-analysis-command file or "command"
	-post-analysis-command file or "command"

	Target/Compiler Options
	-target target-name
	-OS-target OperatingSystemTarget

	Compliance with Standards Options
	-storage-unit number
	-base-type-directly-visible
	Permissiveness/Strictness
	-permissive
	-continue-with-in-out-niv
	-strict
	-no-automatic-stubbing
	-continue-with-all-niv

	PolySpace Inner Settings Options
	-main main_subprogram_name
	-main-generator
	Stubbing
	-import-are-not-volatile
	-export-are-not-volatile
	-init-stubbing-vars-random
	-init-stubbing-vars-zero-or-random

	Assumptions
	-ignore-float-rounding
	-known-NTC proc1[,proc2[,...]]

	-machine-architecture
	-max-processes
	Others
	-extra-flags option-extra-flag
	-ada95-extra-flags extra-flag (Ada95 only)

	Precision Options
	-from verification-phase
	-to verification-phase
	-O(0-3)
	-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
	-array-expansion-size number
	-path-sensitivity-delta number
	-variables-to-expand var1[,var2[,...]]
	-variable-expansion-depth number

	Multitasking Options (PolySpace Server Only)
	-entry-points str1[,str2[,...]]
	-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	-temporal-exclusions-file file_name

	Batch Options
	-server server_name_or_ip[:port_number]
	-h[elp]
	-v | -version
	-sources-list-file file_name

	Check Descriptions
	Colored Source Code for Ada
	Non-Initialized Variable: NIV/NIVL
	Examples
	Pragma Interface/Import
	Type Access Variables
	Address Clauses

	Division by Zero: ZDV
	Ada Example:
	Arithmetic Exceptions: EXCP
	Ada Example
	Explanation

	Scalar and Float Underflow/Overflow : UOVFL
	Ada Example
	Explanation

	Scalar and Float Overflow: OVFL
	Ada Example
	Explanation

	Scalar and Float Underflow: UNFL
	Ada Example
	Explanation

	Attributes Check: COR
	Ada Example
	Explanation
	SIZE Attribute Error: COR
	Explanation

	Array Length Check: COR
	Ada Example
	Explanation

	DIGITS Value Check: COR
	Ada Example
	Explanation

	DELTA Value Length Check: COR
	Ada Example
	Explanation

	Static Range and Values Check: COR
	Ada Example
	Explanation

	Discriminant Check: COR
	Ada Example
	Explanation

	Component Check: COR
	Ada Example
	Explanation

	Dimension Versus Definition Check: COR
	Ada Example
	Explanation

	Aggregate Versus Definition Check: COR
	Ada Example
	Explanation

	Aggregate Array Length Check: COR
	Ada Example
	Explanation

	Sub-Aggregates Dimension Check: COR
	Ada Example
	Explanation

	Characters Check: COR
	Ada Example
	Explanation

	Accessibility Level on Access Type: COR
	Ada Example
	Explanation

	Explicit Dereference of a Null Pointer: COR
	Ada Example
	Explanation

	Accessibility of a Tagged Type: COR
	Ada Example
	Explanation

	Power Arithmetic: POW
	Ada Example
	Explanation

	User Assertion: ASRT
	Ada Example
	Explanation

	Non Terminations: Calls and Loops
	Solution
	Non Termination of Call: NTC
	Non Termination of Call Due to Entry in Tasks
	Known Non Termination of Call: k-NTC
	Non Termination of Loop: NTL
	Sqrt, Sin, Cos, and Generic Elementary Functions

	Unreachable Code: UNR
	Ada Example
	Explanation

	Value on Assignment: VOA
	Ada Example
	Explanation

	Inspection Points: IPT
	Ada Example
	Explanation

	Approximations Used During Verification
	Why PolySpace Verification Uses Approximations
	What is Static Verification
	Exhaustiveness

	Examples
	Complete Examples
	Simple Ada Example
	HDCA Server Example
	airplane2 Example
	High Speed Train Example

